Effects of Intermittent Administration of Parathyroid Hormone and Parathyroid Hormone‐Related Protein on Fracture Healing: A Narrative Review of Animal and Human Studies
dc.contributor.author | Yamashita, Junro | |
dc.contributor.author | McCauley, Laurie K | |
dc.date.accessioned | 2020-01-13T15:08:36Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-01-13T15:08:36Z | |
dc.date.issued | 2019-12 | |
dc.identifier.citation | Yamashita, Junro; McCauley, Laurie K (2019). "Effects of Intermittent Administration of Parathyroid Hormone and Parathyroid Hormone‐Related Protein on Fracture Healing: A Narrative Review of Animal and Human Studies." JBMR Plus 3(12): n/a-n/a. | |
dc.identifier.issn | 2473-4039 | |
dc.identifier.issn | 2473-4039 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/152728 | |
dc.description.abstract | Intermittent administration of parathyroid hormone (PTH) stimulates skeletal remodeling and is a potent anabolic agent in bone. PTH‐related protein (PTHrP) is anabolic acting on the same PTH1 receptor and is in therapeutic use for osteoporosis. The body of literature for PTH actions in fracture healing is emerging with promising yet not entirely consistent results. The objective of this review was to perform a literature analysis to extract up‐to‐date knowledge on the effects of intermittent PTH and PTHrP therapy in bone fracture healing. A literature search of the PubMed database was performed. Clinical case studies and articles related to “regeneration,” “implant,” and “distraction osteogenesis” were excluded. A narrative review was performed to deliberate the therapeutic potential of intermittent PTH administration on fracture healing. A smaller number of studies centered on the use of PTHrP or a PTHrP analog were also reviewed. Animal studies clearly show that intermittent PTH therapy promotes fracture healing and revealed the strong therapeutic potential of PTH. Human subject studies were fewer and not as consistent as the animal studies yet provide insight into the potential of intermittent PTH administration on fracture healing. Differences in outcomes for animal and human studies appear to be attributed partly to variable doses, fracture sites, age, remodeling patterns, and bone architectures, although other factors are involved. Future studies to examine the dose, timing, and duration of PTH administration will be necessary to further delineate the therapeutic potential of PTH for fracture healing in humans. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | ANABOLICS | |
dc.subject.other | FRACTURE HEALING | |
dc.subject.other | ORTHOPEDICS | |
dc.title | Effects of Intermittent Administration of Parathyroid Hormone and Parathyroid Hormone‐Related Protein on Fracture Healing: A Narrative Review of Animal and Human Studies | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Endocrinology | |
dc.subject.hlbsecondlevel | Geriatric Medicine | |
dc.subject.hlbsecondlevel | Rheumatology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152728/1/jbm410250_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152728/2/jbm410250.pdf | |
dc.identifier.doi | 10.1002/jbm4.10250 | |
dc.identifier.source | JBMR Plus | |
dc.identifier.citedreference | Silverberg SJ, Shane E, de la Cruz L, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res. 1989; 4 ( 3 ): 283 – 91. | |
dc.identifier.citedreference | Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. Injury. 2007; 38 ( Suppl 1 ): S49 – 62. | |
dc.identifier.citedreference | Krishnakumar GS, Roffi A, Reale D, Kon E, Filardo G. Clinical application of bone morphogenetic proteins for bone healing: a systematic review. Int Orthop. 2017; 41 ( 6 ): 1073 – 83. | |
dc.identifier.citedreference | Kalu DN, Doyle FH, Pennock J, Denys‐Matrajt H, Foster GV. Anabolic effect of parathyroid hormone on bone in the rat. Calcif Tissue Res. 1970; 4 ( 1 ): 72. | |
dc.identifier.citedreference | Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1‐34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001; 344 ( 19 ): 1434 – 41. | |
dc.identifier.citedreference | Horwitz MJ, Tedesco MB, Gundberg C, Garcia‐Ocana A, Stewart AF. Short‐term, high‐dose parathyroid hormone‐related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2003; 88 ( 2 ): 569 – 75. | |
dc.identifier.citedreference | Rachner TD, Hofbauer L, Gobel A, Tsourdi E. Novel therapies in osteoporosis: PTH‐related peptide analogues and inhibitors of sclerostin. J Mol Endocrinol. 2019; 62 ( 2 ): R145 – R54. | |
dc.identifier.citedreference | Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post‐menopausal women with severe osteoporosis (VERO): a multicentre, double‐blind, double‐dummy, randomised controlled trial. Lancet. 2018; 391 ( 10117 ): 230 – 40. | |
dc.identifier.citedreference | Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016; 316 ( 7 ): 722 – 33. | |
dc.identifier.citedreference | Wojda SJ, Donahue SW. Parathyroid hormone for bone regeneration. J Orthop Res. 2018; 36 ( 10 ): 2586 – 94. | |
dc.identifier.citedreference | Liu Y, Levack AE, Marty E, et al. Anabolic agents: what is beyond osteoporosis? Osteoporos Int. 2018; 29 ( 5 ): 1009 – 22. | |
dc.identifier.citedreference | Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM. Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta‐analysis of comparative studies. Spine. 2018; 43 ( 17 ): E1014 – E23. | |
dc.identifier.citedreference | Ross RD, Hamilton JL, Wilson BM, Sumner DR, Virdi AS. Pharmacologic augmentation of implant fixation in osteopenic bone. Curr Osteoporos Rep. 2014; 12 ( 1 ): 55 – 64. | |
dc.identifier.citedreference | Chan HL, McCauley LK. Parathyroid hormone applications in the craniofacial skeleton. J Dent Res. 2013; 92 ( 1 ): 18 – 25. | |
dc.identifier.citedreference | Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1‐34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999; 14 ( 6 ): 960 – 8. | |
dc.identifier.citedreference | Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA. Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res. 1999; 366: 258 – 63. | |
dc.identifier.citedreference | Nakajima A, Shimoji N, Shiomi K, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low‐dose human parathyroid hormone (1‐34). J Bone Miner Res. 2002; 17 ( 11 ): 2038 – 47. | |
dc.identifier.citedreference | Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low‐dose, intermittent treatment with recombinant human parathyroid hormone (1‐34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005; 37 ( 5 ): 711 – 9. | |
dc.identifier.citedreference | Kakar S, Einhorn TA, Vora S, et al. Enhanced chondrogenesis and Wnt signaling in PTH‐treated fractures. J Bone Miner Res. 2007; 22 ( 12 ): 1903 – 12. | |
dc.identifier.citedreference | Andreassen TT, Willick GE, Morley P, Whitfield JF. Treatment with parathyroid hormone hPTH(1‐34), hPTH(1‐31), and monocyclic hPTH(1‐31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004; 74 ( 4 ): 351 – 6. | |
dc.identifier.citedreference | Alkhiary YM, Gerstenfeld LC, Krall E, et al. Enhancement of experimental fracture‐healing by systemic administration of recombinant human parathyroid hormone (PTH 1‐34). J Bone Joint Surg Am. 2005; 87 ( 4 ): 731 – 41. | |
dc.identifier.citedreference | Komatsubara S, Mori S, Mashiba T, et al. Human parathyroid hormone (1‐34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005; 36 ( 4 ): 678 – 87. | |
dc.identifier.citedreference | Turner AS. Animal models of osteoporosis‐necessity and limitations. Eur Cell Mater. 2001; 1: 66 – 81. | |
dc.identifier.citedreference | Manabe T, Mori S, Mashiba T, et al. Human parathyroid hormone (1‐34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone. 2007; 40 ( 6 ): 1475 – 82. | |
dc.identifier.citedreference | Csongradi JJ, Maloney WJ. Ununited lower limb fractures. West J Med. 1989; 150 ( 6 ): 675 – 80. | |
dc.identifier.citedreference | Chen H, Frankenburg EP, Goldstein SA, McCauley LK. Combination of local and systemic parathyroid hormone enhances bone regeneration. Clin Orthop Relat Res. 2003; 416: 291 – 302. | |
dc.identifier.citedreference | Tägil M, McDonald MM, Morse A, et al. Intermittent PTH(1‐34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone. 2010; 46 ( 3 ): 852 – 9. | |
dc.identifier.citedreference | Piemontese M, Almeida M, Robling AG, et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight. 2017; 2 ( 17 ):e93771. | |
dc.identifier.citedreference | Jowsey J. Studies of Haversian systems in man and some animals. J Anat. 1966; 100 ( Pt 4 ): 857 – 64. | |
dc.identifier.citedreference | Gunness‐Hey M, Hock JM. Loss of the anabolic effect of parathyroid hormone on bone after discontinuation of hormone in rats. Bone. 1989; 10 ( 6 ): 447 – 52. | |
dc.identifier.citedreference | Takano Y, Tanizawa T, Mashiba T, Endo N, Nishida S, Takahashi HE. Maintaining bone mass by bisphosphonate incadronate disodium (YM175) sequential treatment after discontinuation of intermittent human parathyroid hormone (1‐34) administration in ovariectomized rats. J Bone Miner Res. 1996; 11 ( 2 ): 169 – 77. | |
dc.identifier.citedreference | Kaufman JM, Orwoll E, Goemaere S, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005; 16 ( 5 ): 510 – 6. | |
dc.identifier.citedreference | Prince R, Sipos A, Hossain A, et al. Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res. 2005; 20 ( 9 ): 1507 – 13. | |
dc.identifier.citedreference | Niimi R, Kono T, Nishihara A, Hasegawa M, Kono T, Sudo A. Efficacy of switching from teriparatide to bisphosphonate or denosumab: a prospective, randomized, open‐label trial. JBMR Plus. 2018; 2 ( 5 ): 289 – 94. | |
dc.identifier.citedreference | Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1‐84) for osteoporosis. N Engl J Med. 2005; 353 ( 6 ): 555 – 65. | |
dc.identifier.citedreference | Adami S, San Martin J, Munoz‐Torres M, et al. Effect of raloxifene after recombinant teriparatide [hPTH(1‐34)] treatment in postmenopausal women with osteoporosis. Osteoporos Int. 2008; 19 ( 1 ): 87 – 94. | |
dc.identifier.citedreference | Eastell R, Nickelsen T, Marin F, et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res. 2009; 24 ( 4 ): 726 – 36. | |
dc.identifier.citedreference | Leder BZ, Neer RM, Wyland JJ, Lee HW, Burnett‐Bowie SM, Finkelstein JS. Effects of teriparatide treatment and discontinuation in postmenopausal women and eugonadal men with osteoporosis. J Clin Endocrinol Metab. 2009; 94 ( 8 ): 2915 – 21. | |
dc.identifier.citedreference | Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017; 32 ( 2 ): 198 – 202. | |
dc.identifier.citedreference | Office of the Surgeon General (US). Bone health and osteoporosis: a report of the Surgeon General. Rockville, MD: Office of the Surgeon General (US); 2004. | |
dc.identifier.citedreference | UN Department of Economic and Social Affairs. World population prospects: the 2017 revision, key findings and advance tables. ESA/P/WP/248. New York: United Nations Department of Economic and Social Affairs, Population Division; 2017. | |
dc.identifier.citedreference | Katsoulis M, Benetou V, Karapetyan T, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017; 281 ( 3 ): 300 – 10. | |
dc.identifier.citedreference | Adolphson P, Abbaszadegan H, Boden H, Salemyr M, Henriques T. Clodronate increases mineralization of callus after Colles’ fracture: a randomized, double‐blind, placebo‐controlled, prospective trial in 32 patients. Acta Orthop Scand. 2000; 71 ( 2 ): 195 – 200. | |
dc.identifier.citedreference | Zhou HH, Liu Q, Yang RT, Li Z, Li ZB. Maxillofacial fractures in women and men: a 10‐year retrospective study. J Oral Maxillofac Surg. 2015; 73 ( 11 ): 2181 – 8. | |
dc.identifier.citedreference | Zweig BE. Complications of mandibular fractures. Atlas Oral Maxillofac Surg Clin North Am. 2009; 17 ( 1 ): 93 – 101. | |
dc.identifier.citedreference | Cha YH, Hong N, Rhee Y, Cha IH. Teriparatide therapy for severe, refractory osteoradionecrosis of the jaw. Osteoporos Int. 2018; 29 ( 4 ): 987 – 92. | |
dc.identifier.citedreference | Jung J, Yoo HY, Kim GT, et al. Short‐term teriparatide and recombinant human bone morphogenetic protein‐2 for regenerative approach to medication‐related osteonecrosis of the jaw: a preliminary study. J Bone Miner Res. 2017; 32 ( 12 ): 2445 – 52. | |
dc.identifier.citedreference | Kim KM, Park W, Oh SY, et al. Distinctive role of 6‐month teriparatide treatment on intractable bisphosphonate‐related osteonecrosis of the jaw. Osteoporos Int. 2014; 25 ( 5 ): 1625 – 32. | |
dc.identifier.citedreference | Kwon YD, Lee DW, Choi BJ, Lee JW, Kim DY. Short‐term teriparatide therapy as an adjunctive modality for bisphosphonate‐related osteonecrosis of the jaws. Osteoporos Int. 2012; 23 ( 11 ): 2721 – 5. | |
dc.identifier.citedreference | Wang HL, Weber D, McCauley LK. Effect of long‐term oral bisphosphonates on implant wound healing: literature review and a case report. J Periodontol. 2007; 78 ( 3 ): 584 – 94. | |
dc.identifier.citedreference | Rozen N, Lewinson D, Bick T, Jacob ZC, Stein H, Soudry M. Fracture repair: modulation of fracture‐callus and mechanical properties by sequential application of IL‐6 following PTH 1‐34 or PTH 28‐48. Bone. 2007; 41 ( 3 ): 437 – 45. | |
dc.identifier.citedreference | Gardner MJ, van der Meulen MC, Carson J, et al. Role of parathyroid hormone in the mechanosensitivity of fracture healing. J Orthop Res. 2007; 25 ( 11 ): 1474 – 80. | |
dc.identifier.citedreference | Reagan‐Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008; 22 ( 3 ): 659 – 61. | |
dc.identifier.citedreference | Quinn R. Comparing rat’s to human’s age: how old is my rat in people years? Nutrition. 2005; 21 ( 6 ): 775 – 7. | |
dc.identifier.citedreference | Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013; 110 ( 9 ): 3507 – 12. | |
dc.identifier.citedreference | Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci. 2007; 52 ( 2 ): 249 – 63. | |
dc.identifier.citedreference | Buddhachat K, Klinhom S, Siengdee P, et al. Elemental analysis of bone, teeth, horn and antler in different animal species using non‐invasive handheld X‐ray fluorescence. PLoS One. 2016; 11 ( 5 ): e0155458. | |
dc.identifier.citedreference | Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998; 23 ( 3 ): 275 – 81. | |
dc.identifier.citedreference | Fermor B, Skerry TM. PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res. 1995; 10 ( 12 ): 1935 – 43. | |
dc.identifier.citedreference | Singh IJ, Tonna EA, Gandel CP. A comparative histological study of mammalian bone. J Morphol. 1974; 144 ( 4 ): 421 – 37. | |
dc.identifier.citedreference | Warden SJ, Komatsu DE, Rydberg J, Bond JL, Hassett SM. Recombinant human parathyroid hormone (PTH 1‐34) and low‐intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone. 2009; 44 ( 3 ): 485 – 94. | |
dc.identifier.citedreference | Sloan AV, Martin JR, Li S, Li J. Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone. 2010; 47 ( 2 ): 235 – 40. | |
dc.identifier.citedreference | Feeley BT, Doty SB, Devcic Z, Warren RF, Lane JM. Deleterious effects of intermittent recombinant parathyroid hormone on cartilage formation in a rabbit microfracture model: a preliminary study. HSS J. 2010; 6 ( 1 ): 79 – 84. | |
dc.identifier.citedreference | Mognetti B, Marino S, Barberis A, et al. Experimental stimulation of bone healing with teriparatide: histomorphometric and microhardness analysis in a mouse model of closed fracture. Calcif Tissue Int. 2011; 89 ( 2 ): 163 – 71. | |
dc.identifier.citedreference | Milstrey A, Wieskoetter B, Hinze D, et al. Dose‐dependent effect of parathyroid hormone on fracture healing and bone formation in mice. J Surg Res. 2017; 220: 327 – 35. | |
dc.identifier.citedreference | Ota M, Takahata M, Shimizu T, et al. Optimal administration frequency and dose of teriparatide for acceleration of biomechanical healing of long‐bone fracture in a mouse model. J Bone Miner Metab. 2018; 37 ( 2 ): 256 – 63. | |
dc.identifier.citedreference | Komrakova M, Stuermer EK, Werner C, et al. Effect of human parathyroid hormone hPTH (1‐34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone. 2010; 47 ( 3 ): 480 – 92. | |
dc.identifier.citedreference | Komrakova M, Krischek C, Wicke M, et al. Influence of intermittent administration of parathyroid hormone on muscle tissue and bone healing in orchiectomized rats or controls. J Endocrinol. 2011; 209 ( 1 ): 9 – 19. | |
dc.identifier.citedreference | Li YF, Zhou CC, Li JH, et al. The effects of combined human parathyroid hormone (1‐34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int. 2012; 23 ( 4 ): 1463 – 74. | |
dc.identifier.citedreference | Ellegaard M, Kringelbach T, Syberg S, et al. The effect of PTH(1‐34) on fracture healing during different loading conditions. J Bone Miner Res. 2013; 28 ( 10 ): 2145 – 55. | |
dc.identifier.citedreference | Mansjur KQ, Kuroda S, Izawa T, et al. The effectiveness of human parathyroid hormone and low‐intensity pulsed ultrasound on the fracture healing in osteoporotic bones. Ann Biomed Eng. 2016; 44 ( 8 ): 2480 – 8. | |
dc.identifier.citedreference | Cohn Yakubovich D, Sheyn D, Bez M, et al. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures. Stem Cell Res Ther. 2017; 8 ( 1 ):51. | |
dc.identifier.citedreference | Kanakaris NK, West RM, Giannoudis PV. Enhancement of hip fracture healing in the elderly: evidence deriving from a pilot randomized trial. Injury. 2015; 46 ( 8 ): 1425 – 8. | |
dc.identifier.citedreference | Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non‐unions. Injury. 2007; 38 ( Suppl 2 ): S11 – 8. | |
dc.identifier.citedreference | Kim HW, Jahng JS. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J. 1999; 19: 71 – 7. | |
dc.identifier.citedreference | Nozaka K, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Shimada Y. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone. 2008; 42 ( 1 ): 90 – 7. | |
dc.identifier.citedreference | Tsuchie H, Miyakoshi N, Kasukawa Y, Aonuma H, Shimada Y. Intermittent administration of human parathyroid hormone before osteosynthesis stimulates cancellous bone union in ovariectomized rats. Tohoku J Exp Med. 2013; 229 ( 1 ): 19 – 28. | |
dc.identifier.citedreference | Zhou S, Greenberger JS, Epperly MW, et al. Age‐related intrinsic changes in human bone‐marrow‐derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008; 7 ( 3 ): 335 – 43. | |
dc.identifier.citedreference | Andreassen TT, Fledelius C, Ejersted C, Oxlund H. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand. 2001; 72 ( 3 ): 304 – 7. | |
dc.identifier.citedreference | Norris R, Parker M. Diabetes mellitus and hip fracture: a study of 5966 cases. Injury. 2011; 42 ( 11 ): 1313 – 6. | |
dc.identifier.citedreference | Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014; 29 ( 4 ): 787 – 95. | |
dc.identifier.citedreference | Liu GY, Cao GL, Tian FM, et al. Parathyroid hormone (1‐34) promotes fracture healing in ovariectomized rats with type 2 diabetes mellitus. Osteoporos Int. 2017; 28 ( 10 ): 3043 – 53. | |
dc.identifier.citedreference | Rowshan HH, Parham MA, Baur DA, et al. Effect of intermittent systemic administration of recombinant parathyroid hormone (1‐34) on mandibular fracture healing in rats. J Oral Maxillofac Surg. 2010; 68 ( 2 ): 260 – 7. | |
dc.identifier.citedreference | Rubery PT, Bukata SV. Teriparatide may accelerate healing in delayed unions of type III odontoid fractures: a report of 3 cases. J Spinal Disord Tech. 2010; 23 ( 2 ): 151 – 5. | |
dc.identifier.citedreference | Chintamaneni S, Finzel K, Gruber BL. Successful treatment of sternal fracture nonunion with teriparatide. Osteoporos Int. 2010; 21 ( 6 ): 1059 – 63. | |
dc.identifier.citedreference | Lee YK, Ha YC, Koo KH. Teriparatide, a nonsurgical solution for femoral nonunion? A report of three cases. Osteoporos Int. 2012; 23 ( 12 ): 2897 – 900. | |
dc.identifier.citedreference | Tamai K, Takamatsu K, Kazuki K. Successful treatment of nonunion with teriparatide after failed ankle arthrodesis for Charcot arthropathy. Osteoporos Int. 2013; 24 ( 10 ): 2729 – 32. | |
dc.identifier.citedreference | Tachiiri H, Okuda Y, Yamasaki T, Kusakabe T. Weekly teriparatide administration for the treatment of delayed union: a report of two cases. Arch Osteoporos. 2014; 9: 179. | |
dc.identifier.citedreference | Yu CT, Wu JK, Chang CC, Chen CL, Wei JC. Early callus formation in human hip fracture treated with internal fixation and teriparatide. J Rheumatol. 2008; 35 ( 10 ): 2082 – 3. | |
dc.identifier.citedreference | Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double‐blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010; 25 ( 2 ): 404 – 14. | |
dc.identifier.citedreference | Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010; 81 ( 2 ): 234 – 6. | |
dc.identifier.citedreference | Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1‐84 accelerates fracture‐healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011; 93 ( 17 ): 1583 – 7. | |
dc.identifier.citedreference | Magaziner J, Wehren L, Hawkes WG, et al. Women with hip fracture have a greater rate of decline in bone mineral density than expected: another significant consequence of a common geriatric problem. Osteoporos Int. 2006; 17 ( 7 ): 971 – 7. | |
dc.identifier.citedreference | Bhandari M, Jin L, See K, et al. Does teriparatide improve femoral neck fracture healing: results from a randomized placebo‐controlled trial. Clin Orthop Relat Res. 2016; 474 ( 5 ): 1234 – 44. | |
dc.identifier.citedreference | Malouf‐Sierra J, Tarantino U, Garcia‐Hernandez PA, et al. Effect of teriparatide or risedronate in elderly patients with a recent pertrochanteric hip fracture: final results of a 78‐week randomized clinical trial. J Bone Miner Res. 2017; 32 ( 5 ): 1040 – 51. | |
dc.identifier.citedreference | Almirol EA, Chi LY, Khurana B, et al. Short‐term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower‐extremity stress fractures: a pilot study. J Clin Transl Endocrinol. 2016; 5: 7 – 14. | |
dc.identifier.citedreference | Johansson T. PTH 1‐34 (teriparatide) may not improve healing in proximal humerus fractures. A randomized, controlled study of 40 patients. Acta Orthop. 2016; 87 ( 1 ): 79 – 82. | |
dc.identifier.citedreference | Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005; 90 ( 3 ): 1294 – 301. | |
dc.identifier.citedreference | Yamashita J, McCauley LK. Antiresorptives and osteonecrosis of the jaw. J Evid Based Dent Pract. 2012; 12 ( 3 Suppl ): 233 – 47. | |
dc.identifier.citedreference | Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014; 29 ( 1 ): 1 – 23. | |
dc.identifier.citedreference | Li J, Mori S, Kaji Y, Mashiba T, Kawanishi J, Norimatsu H. Effect of bisphosphonate (incadronate) on fracture healing of long bones in rats. J Bone Miner Res. 1999; 14 ( 6 ): 969 – 79. | |
dc.identifier.citedreference | Peter CP, Cook WO, Nunamaker DM, Provost MT, Seedor JG, Rodan GA. Effect of alendronate on fracture healing and bone remodeling in dogs. J Orthop Res. 1996; 14 ( 1 ): 74 – 9. | |
dc.identifier.citedreference | Gerstenfeld LC, Sacks DJ, Pelis M, et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res. 2009; 24 ( 2 ): 196 – 208. | |
dc.identifier.citedreference | Cao Y, Mori S, Mashiba T, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res. 2002; 17 ( 12 ): 2237 – 46. | |
dc.identifier.citedreference | Savaridas T, Wallace RJ, Salter DM, Simpson AH. Do bisphosphonates inhibit direct fracture healing? A laboratory investigation using an animal model. Bone Joint J. 2013; 95‐B ( 9 ): 1263 – 8. | |
dc.identifier.citedreference | Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008; 15: 53 – 76. | |
dc.identifier.citedreference | Aspenberg P, Malouf J, Tarantino U, et al. Effects of teriparatide compared with risedronate on recovery after pertrochanteric hip fracture: results of a randomized, active‐controlled, double‐blind clinical trial at 26 weeks. J Bone Joint Surg Am. 2016; 98 ( 22 ): 1868 – 78. | |
dc.identifier.citedreference | Iwata A, Kanayama M, Oha F, Hashimoto T, Iwasaki N. Effect of teriparatide (rh‐PTH 1‐34) versus bisphosphonate on the healing of osteoporotic vertebral compression fracture: a retrospective comparative study. BMC Musculoskelet Disord. 2017; 18 ( 1 ): 148. | |
dc.identifier.citedreference | Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003; 349 ( 13 ): 1207 – 15. | |
dc.identifier.citedreference | Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003; 349 ( 13 ): 1216 – 26. | |
dc.identifier.citedreference | Ettinger B, San Martin J, Crans G, Pavo I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res. 2004; 19 ( 5 ): 745 – 51. | |
dc.identifier.citedreference | Boonen S, Marin F, Obermayer‐Pietsch B, et al. Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2008; 93 ( 3 ): 852 – 60. | |
dc.identifier.citedreference | Stepan JJ, Burr DB, Li J, et al. Histomorphometric changes by teriparatide in alendronate‐pretreated women with osteoporosis. Osteoporos Int. 2010; 21 ( 12 ): 2027 – 36. | |
dc.identifier.citedreference | Hofstetter B, Gamsjaeger S, Varga F, et al. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment‐naive or on long‐term alendronate therapy. Osteoporos Int. 2014; 25 ( 12 ): 2709 – 19. | |
dc.identifier.citedreference | Ma YL, Zeng QQ, Chiang AY, et al. Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone. 2014; 59: 139 – 47. | |
dc.identifier.citedreference | Fahrleitner‐Pammer A, Burr D, Dobnig H, et al. Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment. Bone. 2016; 89: 16 – 24. | |
dc.identifier.citedreference | Huang TW, Chuang PY, Lin SJ, et al. Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures. Medicine. 2016; 95 ( 19 ): e3626. | |
dc.identifier.citedreference | Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011; 364 ( 18 ): 1728 – 37. | |
dc.identifier.citedreference | Dell RM, Adams AL, Greene DF, et al. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res. 2012; 27 ( 12 ): 2544 – 50. | |
dc.identifier.citedreference | Chiang CY, Zebaze RM, Ghasem‐Zadeh A, Iuliano‐Burns S, Hardidge A, Seeman E. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone. 2013; 52 ( 1 ): 360 – 5. | |
dc.identifier.citedreference | Miyakoshi N, Aizawa T, Sasaki S, et al. Healing of bisphosphonate‐associated atypical femoral fractures in patients with osteoporosis: a comparison between treatment with and without teriparatide. J Bone Miner Metab. 2015; 33 ( 5 ): 553 – 9. | |
dc.identifier.citedreference | Greenspan SL, Vujevich K, Britton C, et al. Teriparatide for treatment of patients with bisphosphonate‐associated atypical fracture of the femur. Osteoporos Int. 2018; 29 ( 2 ): 501 – 6. | |
dc.identifier.citedreference | Bostrom MP, Gamradt SC, Asnis P, et al. Parathyroid hormone‐related protein analog RS‐66271 is an effective therapy for impaired bone healing in rabbits on corticosteroid therapy. Bone. 2000; 26 ( 5 ): 437 – 42. | |
dc.identifier.citedreference | Wang YH, Qiu Y, Han XD, et al. Haploinsufficiency of endogenous parathyroid hormone‐related peptide impairs bone fracture healing. Clin Exp Pharmacol Physiol. 2013; 40 ( 11 ): 715 – 23. | |
dc.identifier.citedreference | Liu A, Li Y, Wang Y, Liu L, Shi H, Qiu Y. Exogenous parathyroid hormone‐related peptide promotes fracture healing in Lepr(−/−) mice. Calcif Tissue Int. 2015; 97 ( 6 ): 581 – 91. | |
dc.identifier.citedreference | Wang Y, Fang X, Wang C, et al. Exogenous PTHrP repairs the damaged fracture healing of PTHrP+/− mice and accelerates fracture healing of wild mice. Int J Mol Sci. 2017; 18 ( 2 ): E337. | |
dc.identifier.citedreference | Varela A, Chouinard L, Lesage E, Smith SY, Hattersley G. One year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in osteopenic ovariectomized rats without increasing bone resorption. J Bone Miner Res. 2017; 32 ( 1 ): 24 – 33. | |
dc.identifier.citedreference | Leder BZ, O’Dea LS, Zanchetta JR, et al. Effects of abaloparatide, a human parathyroid hormone‐related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015; 100 ( 2 ): 697 – 706. | |
dc.identifier.citedreference | Bilezikian JP, Hattersley G, Fitzpatrick LA, et al. Abaloparatide‐SC improves trabecular microarchitecture as assessed by trabecular bone score (TBS): a 24‐week randomized clinical trial. Osteoporos Int. 2018; 29 ( 2 ): 323 – 8. | |
dc.identifier.citedreference | Bernhardsson M, Aspenberg P. Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthop. 2018; 89 ( 6 ): 674 – 7. | |
dc.identifier.citedreference | Lanske B, Chandler H, Pierce A, et al. Abaloparatide, a PTH receptor agonist with homology to PTHrP, enhances callus bridging and biomechanical properties in rats with femoral fracture. J Orthop Res. 2019; 37 ( 4 ): 812 – 20. | |
dc.identifier.citedreference | Beaver R, Brinker MR, Barrack RL. An analysis of the actual cost of tibial nonunions. J La State Med Soc. 1997; 149 ( 6 ): 200 – 6. | |
dc.identifier.citedreference | Moosgaard B, Christensen SE, Vestergaard P, Heickendorff L, Christiansen P, Mosekilde L. Vitamin D metabolites and skeletal consequences in primary hyperparathyroidism. Clin Endocrinol. 2008; 68 ( 5 ): 707 – 15. | |
dc.identifier.citedreference | Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone. 1986; 7 ( 3 ): 213 – 21. | |
dc.identifier.citedreference | Khosla S, Melton LJ 3rd, Wermers RA, Crowson CS, O’Fallon W, Riggs B. Primary hyperparathyroidism and the risk of fracture: a population‐based study. J Bone Miner Res. 1999; 14 ( 10 ): 1700 – 7. | |
dc.identifier.citedreference | Stein EM, Silva BC, Boutroy S, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013; 28 ( 5 ): 1029 – 40. | |
dc.identifier.citedreference | Hansen S, Hauge EM, Rasmussen L, Jensen JE, Brixen K. Parathyroidectomy improves bone geometry and microarchitecture in female patients with primary hyperparathyroidism: a one‐year prospective controlled study using high‐resolution peripheral quantitative computed tomography. J Bone Miner Res. 2012; 27 ( 5 ): 1150 – 8. | |
dc.identifier.citedreference | Vu TD, Wang XF, Wang Q, et al. New insights into the effects of primary hyperparathyroidism on the cortical and trabecular compartments of bone. Bone. 2013; 55 ( 1 ): 57 – 63. | |
dc.identifier.citedreference | Yukata K, Kanchiku T, Egawa H, et al. Continuous infusion of PTH1‐34 delayed fracture healing in mice. Sci Rep. 2018; 8 ( 1 ): 13175. | |
dc.identifier.citedreference | Sauve PS, Suliman IG, Calder JD. Primary hyperparathyroidism presenting as delayed fracture union. Knee Surg Sports Traumatol Arthrosc. 2009; 17 ( 5 ): 551 – 4. | |
dc.identifier.citedreference | Bennett JT, Alexander HH, Morrissy RT. Parathyroid adenoma presenting as a pathologic fracture of the femoral neck in an adolescent. J Pediatr Orthop. 1986; 6 ( 4 ): 473 – 6. | |
dc.identifier.citedreference | Juliano JS, Juliano PJ. Hyperparathyroidism presenting as a nonunion of the femur: case report and review of the literature. Mil Med. 2000; 165 ( 7 ): 569 – 71. | |
dc.identifier.citedreference | Chalmers J, Irvine GB. Fractures of the femoral neck in elderly patients with hyperparathyroidism. Clin Orthop Relat Res. 1988; 229: 125 – 30. | |
dc.identifier.citedreference | Lancourt JE, Hochberg F. Delayed fracture healing in primary hyperparathyroidism. Clin Orthop Relat Res. 1977; 124: 214 – 8. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.