Show simple item record

High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting

dc.contributor.authorWu, Si
dc.contributor.authorLi, Tingxian
dc.contributor.authorTong, Zhen
dc.contributor.authorChao, Jingwei
dc.contributor.authorZhai, Tianyao
dc.contributor.authorXu, Jiaxing
dc.contributor.authorYan, Taisen
dc.contributor.authorWu, Minqiang
dc.contributor.authorXu, Zhenyuan
dc.contributor.authorBao, Hua
dc.contributor.authorDeng, Tao
dc.contributor.authorWang, Ruzhu
dc.date.accessioned2020-01-13T15:08:56Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:08:56Z
dc.date.issued2019-12
dc.identifier.citationWu, Si; Li, Tingxian; Tong, Zhen; Chao, Jingwei; Zhai, Tianyao; Xu, Jiaxing; Yan, Taisen; Wu, Minqiang; Xu, Zhenyuan; Bao, Hua; Deng, Tao; Wang, Ruzhu (2019). "High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting." Advanced Materials 31(49): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/152740
dc.description.abstractEfficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.A method for synthesizing high‐performance thermally conductive phase‐ change composites is demonstrated. Large aligned graphite sheets inside the composite are generated from worm‐like expanded graphite. The aligned and interconnected graphite framework enhances KPCM up to 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%, which may accelerate the high‐power‐density, low‐cost, and large‐scale applications of phase‐change materials.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphase change composites
dc.subject.otherthermal conductivity
dc.subject.otherthermal energy harvesting
dc.subject.otherexpanded graphite
dc.subject.othergraphite sheets
dc.titleHigh‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152740/1/adma201905099_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152740/2/adma201905099-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152740/3/adma201905099.pdf
dc.identifier.doi10.1002/adma.201905099
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceM. Bonnissel, L. Luo, D. Tondeur, Carbon 2001, 39, 2151.
dc.identifier.citedreferenceY. Guo, Y. Chen, E. Wang, M. Cakmak, ACS Appl. Mater. Interfaces 2017, 9, 919.
dc.identifier.citedreferenceJ. Yang, L. Tang, R. Bao, L. Bai, Z. Liu, W. Yang, B. Xie, M. Yang, J. Mater. Chem. A 2016, 4, 18841.
dc.identifier.citedreferenceG. Lian, C. Tuan, L. Li, S. Jiao, Q. Wang, K. Moon, D. Cui, C. Wong, Chem. Mater. 2016, 28, 6096.
dc.identifier.citedreferenceJ. Yang, X. Li, S. Han, R. Yang, P. Min, Z. Yu, J. Mater. Chem. A 2018, 6, 5880.
dc.identifier.citedreferenceJ. Zhao, S. Pei, W. Ren, L. Gao, H. Cheng, ACS Nano 2010, 4, 5245.
dc.identifier.citedreferenceY. Ma, Y. Chen, Natl. Sci. Rev. 2015, 2, 40.
dc.identifier.citedreferenceI. Gur, K. Sawyer, R. Prasher, Science 2012, 335, 1454.
dc.identifier.citedreferenceG. G. D. Han, H. Li, J. C. Grossman, Nat. Commun. 2017, 8, 1446.
dc.identifier.citedreferenceZ. Wang, Z. Tong, Q. Ye, H. Hu, X. Nie, C. Yan, W. Shang, C. Song, J. Wu, J. Wang, H. Bao, P. Tao, T. Deng, Nat. Commun. 2017, 8, 1478.
dc.identifier.citedreferenceP. Tao, W. Shang, C. Song, Q. Shen, F. Zhang, Z. Luo, N. Yi, D. Zhang, T. Deng, Adv. Mater. 2015, 27, 428.
dc.identifier.citedreferenceK. Kant, A. Shukla, A. Sharma, Sol. Energy Mater. Sol. Cells 2017, 172, 82.
dc.identifier.citedreferenceP. Bose, V. A. Amirtham, Renewable Sustainable Energy Rev. 2016, 65, 81.
dc.identifier.citedreferenceA. Karaipekli, A. Sarinodot, A. Bicer, Mater. Lett. 2009, 63, 1213.
dc.identifier.citedreferenceM. Zhou, T. Lin, F. Huang, Y. Zhong, Z. Wang, Y. Tang, H. Bi, D. Wan, J. Lin, Adv. Funct. Mater. 2013, 23, 2263.
dc.identifier.citedreferenceY. Wei, J. Li, F. Sun, J. Wu, L. Zhao, Green Chem. 2018, 20, 1858.
dc.identifier.citedreferenceL. Chen, R. Zou, W. Xia, Z. Liu, Y. Shang, J. Zhu, Y. Wang, J. Lin, D. Xia, A. Cao, ACS Nano 2012, 6, 10884.
dc.identifier.citedreferenceA. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, R. C. Haddon, Adv. Mater. 2008, 20, 4740.
dc.identifier.citedreferenceX. Shen, Z. Wang, Y. Wu, X. Liu, Y. He, J. Kim, Nano Lett. 2016, 16, 3585.
dc.identifier.citedreferenceG. Xin, H. Sun, S. M. Scott, T. Yao, F. Lu, D. Shao, T. Hu, G. Wang, G. Ran, J. Lian, ACS Appl. Mater. Interfaces 2014, 6, 15262.
dc.identifier.citedreferenceA. A. Balandin, Nat. Mater. 2011, 10, 569.
dc.identifier.citedreferenceK. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439.
dc.identifier.citedreferenceX. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, B. C. Tinh, R. Xie, J. T. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, B. Ozyilmaz, Nat. Commun. 2014, 5, 3689.
dc.identifier.citedreferenceT. Ma, Z. Liu, J. Wen, Y. Gao, X. Ren, H. Chen, C. Jin, X. L. Ma, N. Xu, H. M. Cheng, W. Ren, Nat. Commun. 2017, 8, 14486.
dc.identifier.citedreferenceH. S. Kim, H. S. Bae, J. Yu, S. Y. Kim, Sci. Rep. 2016, 6, 26825.
dc.identifier.citedreferenceM. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 2015, 27, 2100.
dc.identifier.citedreferenceF. Kargar, Z. Barani, R. Salgado, B. Debnath, J. S. Lewis, E. Aytan, R. K. Lake, A. A. Balandin, ACS Appl. Mater. Interfaces 2018, 10, 37555.
dc.identifier.citedreferenceR. Zheng, J. Gao, J. Wang, G. Chen, Nat. Commun. 2011, 2, 289.
dc.identifier.citedreferenceH. Jung, S. Yu, N. Bae, S. M. Cho, R. H. Kim, S. H. Cho, I. Hwang, B. Jeong, J. S. Ryu, J. Hwang, S. M. Hong, C. M. Koo, C. Park, ACS Appl. Mater. Interfaces 2015, 7, 15256.
dc.identifier.citedreferenceN. Song, D. Jiao, P. Ding, S. Cui, S. Tang, L. Shi, J. Mater. Chem. C 2016, 4, 305.
dc.identifier.citedreferenceQ. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao, Y. Gong, A. K. Mishra, L. Liu, Chem. Mater. 2014, 26, 4459.
dc.identifier.citedreferenceP. Kumar, S. Yu, F. Shahzad, S. M. Hong, Y. Kim, C. M. Koo, Carbon 2016, 101, 120.
dc.identifier.citedreferenceA. L. Cottrill, A. T. Liu, Y. Kunai, V. B. Koman, A. Kaplan, S. G. Mahajan, P. Liu, A. R. Toland, M. S. Strano, Nat. Commun. 2018, 9, 664.
dc.identifier.citedreferenceJ. Yang, Y. Yang, S. W. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. A. Zinn, R. Prasher, T. T. Xu, D. Li, Nat. Nanotechnol. 2012, 7, 91.
dc.identifier.citedreferenceA. Celzard, J. Mareche, G. Furdin, Prog. Mater. Sci. 2005, 50, 93.
dc.identifier.citedreferenceX. Py, R. Olives, S. Mauran, Int. J. Heat Mass Transfer 2001, 44, 2727.
dc.identifier.citedreferenceA. Mills, M. Farid, J. R. Selman, S. Al‐Hallaj, Appl. Therm. Eng. 2006, 26, 1652.
dc.identifier.citedreferenceG. Fang, H. Li, Z. Chen, X. Liu, Energy 2010, 35, 4622.
dc.identifier.citedreferenceL. Zhang, R. Li, B. Tang, P. Wang, Nanoscale 2016, 8, 14600.
dc.identifier.citedreferenceZ. Wu, C. Xu, C. Ma, Z. Liu, H. M. Cheng, W. Ren, Adv. Mater. 2019, 31, 1900199.
dc.identifier.citedreferenceK. M. F. Shahil, A. A. Balandin, Nano Lett. 2012, 12, 861.
dc.identifier.citedreferenceH. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, A. A. Balandin, Nano Lett. 2014, 14, 5155.
dc.identifier.citedreferenceN. Zhang, Y. Song, Y. Du, Y. Yuan, G. Xiao, Y. Gui, Adv. Eng. Mater. 2018, 20, 1800237.
dc.identifier.citedreferenceJ. Che, K. Wu, Y. Lin, K. Wang, Q. Fu, Composites, Part A 2017, 99, 32.
dc.identifier.citedreferenceZ. Y. Wang, X. X. Li, G. Q. Zhang, Y. F. Lv, C. Wang, F. Q. He, C. Z. Yang, C. X. Yang, RSC Adv. 2017, 7, 42909.
dc.identifier.citedreferenceY. J. Noh, H. S. Kim, B. Ku, M. Khil, S. Y. Kim, Adv. Eng. Mater. 2016, 18, 1127.
dc.identifier.citedreferenceH. Ji, D. P. Sellan, M. T. Pettes, X. Kong, J. Ji, L. Shi, R. S. Ruoff, Energy Environ. Sci. 2014, 7, 1185.
dc.identifier.citedreferenceI. Kholmanov, J. Kim, E. Ou, R. S. Ruoff, L. Shi, ACS Nano 2015, 9, 11699.
dc.identifier.citedreferenceX. Chen, H. Gao, M. Yang, W. Dong, X. Huang, A. Li, C. Dong, G. Wang, Nano Energy 2018, 49, 86.
dc.identifier.citedreferenceM. Saeidijavash, J. Garg, B. Grady, B. Smith, Z. Li, R. J. Young, F. Tarannum, N. Bel Bekri, Nanoscale 2017, 9, 12867.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.