Show simple item record

Attachment of Reporter and Conjugate Groups to the 3′ Termini of Oligonucleotides

dc.contributor.authorGreenberg, Marc M.
dc.date.accessioned2020-01-13T15:09:12Z
dc.date.available2020-01-13T15:09:12Z
dc.date.issued2000-10
dc.identifier.citationGreenberg, Marc M. (2000). "Attachment of Reporter and Conjugate Groups to the 3′ Termini of Oligonucleotides." Current Protocols in Nucleic Acid Chemistry 2(1): 4.5.1-4.5.19.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152752
dc.description.abstractConjugation of oligonucleotides at the 3 terminus is less common because this site is used for covalent linkage to solid‐phase oligonucleotide synthesis supports. However, 3‐oligonucleotide conjugates have several valuable physicochemical properties, including their ability to stabilize nucleic acid hybridization complexes and to retard the activity of exonucleases. This unit discusses methods for preparing oligonucleotides conjugated at the 3 terminus.
dc.publisherWiley Periodicals, Inc.
dc.publisherHumana Press
dc.titleAttachment of Reporter and Conjugate Groups to the 3′ Termini of Oligonucleotides
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152752/1/cpnc0405.pdf
dc.identifier.doi10.1002/0471142700.nc0405s02
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceMullah, B., Livak, K., Andrus, A., and Kenney, P. 1998. Efficient synthesis of double dye‐labeled oligodeoxyribonucleotide probes and their application in a real time PCR assay. Nucl. Acids Res. 26: 1026 ‐ 1031.
dc.identifier.citedreferenceScheuer‐Larsen, C., Rosenbohm, C., Jorgensen, T.J.D., and Wengel, J. 1997. Introduction of a universal solid support for oligonucleotide synthesis. Nucleosides Nucleotides 16: 67 ‐ 80.
dc.identifier.citedreferenceSchwartz, M.E., Breaker, R.R., Asteriadis, G.T., and Gough, G.R. 1995. A universal adapter for chemical synthesis of DNA or RNA on any single type of solid support. Tetrahedron Lett. 36: 27 ‐ 30.
dc.identifier.citedreferenceSoukchareun, S., Tregear, G.W., and Haralambidis, J. 1995. Preparation and characterization of antisense oligonucleotide‐peptide hybrids containing viral fusion peptides. Bioconjugate Chem. 6: 43 ‐ 55.
dc.identifier.citedreferenceSoukchareun, S., Haralambidis, J., and Tregear, G. 1998. Use of N α‐Fmoc‐cysteine( S ‐thiobutyl) derivatized oligodeoxynucleotides for the preparation of oligodeoxynucleotide‐peptide hybrid molecules. Bioconjugate Chem. 9: 466 ‐ 475.
dc.identifier.citedreferenceSouthern, E.M., Case‐Green, S.C., Elder, J.K., Johnson, M., Mir, K.U., Wang, L., and Williams, J.C. 1994. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucl. Acids Res. 22: 1368 ‐ 1373.
dc.identifier.citedreferenceStorhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., and Letsinger, R.L. 1998. One‐pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120: 1959 ‐ 1964.
dc.identifier.citedreferenceThaden, J. and Miller, P.S. 1993a. Automated synthesis of oligodeoxyribonucleoside methylphosphonates having [ N ‐(3‐aminoprop‐1‐yl)‐ N ‐(2‐hydroxyethyl)‐2‐aminoethyl] phosphate or methylphosphonic acid at the 3′ end using a modified controlled pore glass support. Bioconjugate Chem. 4: 395 ‐ 401.
dc.identifier.citedreferenceThaden, J. and Miller, P.S. 1993b. Photoaffinity behavior of a conjugate of oligonucleoside methylphosphonate, rhodamine, and psoralen in the presence of complementary oligonucleotides. Bioconjugate Chem. 4: 386 ‐ 394.
dc.identifier.citedreferenceTimofeev, E.N., Kochetkova, S.V., Mirzabekov, A.D., and Florentiev, V.L. 1996. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels. Nucl. Acids Res. 24: 3142 ‐ 3148.
dc.identifier.citedreferenceTruffert, J.‐C., Lorthioir, O., Asseline, U., Thuong, N.T., and Brack, A. 1994. On‐line solid phase synthesis of oligonucleotide‐peptide hybrids using silica supports. Tetrahedron Lett. 35: 2353 ‐ 2356.
dc.identifier.citedreferenceTruffert, J.‐C., Asseline, U., Brack, A., and Thuong, N.T. 1996. Synthesis, purification and characterization of two peptide‐oligonucleotide conjugates as potential artificial nucleases. Tetrahedron 52: 3005 ‐ 3016.
dc.identifier.citedreferenceTung, C.‐H., Wang, J., Leibowtiz, M.J., and Stein, S. 1995. Dual‐specificity interaction of HIV‐1 TAR RNA with tat peptide‐oligonucleotide conjugates. Bioconjugate Chem. 6: 292 ‐ 295.
dc.identifier.citedreferenceUrata, H. and Akagi, M. 1993. A convenient synthesis of oligonucleotides with a 3′‐phosphoglycolate and 3′‐phosphoglycaldehyde terminus. Tetrahedron Lett. 34: 4015 ‐ 4018.
dc.identifier.citedreferenceVenkatesan, H. and Greenberg, M. M. 1996. Improved utility of photolabile solid phase synthesis supports for the synthesis of oligonucleotides containing 3′‐hydroxyl termini. J. Org. Chem. 61: 525 ‐ 529.
dc.identifier.citedreferenceYoo, D.J. and Greenberg, M.M. 1995. Synthesis of oligonucleotides containing 3′‐alkyl carboxylic acids using universal, photolabile solid phase synthesis supports. J. Org. Chem. 60: 3358 ‐ 3364.
dc.identifier.citedreferenceZhan, Z.J. and Lynn, D.G. 1997. Chemical amplification through template‐directed synthesis. J. Am. Chem. Soc. 119: 12420 ‐ 12421.
dc.identifier.citedreferenceZhang, X., Gaffney, B.L., and Jones, R.A. 1997. RNA synthesis using a universal, base‐stable alkyl linker. Nucl. Acids Res. 25: 3980 ‐ 3983.
dc.identifier.citedreferenceZon, G. and Geiser, T.G. 1991. Phosphorothioate oligonucleotides: Chemistry, purification, analysis, scale‐up and future directions. Anti‐Cancer Drug Des. 6: 539 ‐ 568.
dc.identifier.citedreferenceZuckerman, R., Corey, D., and Schultz, P. 1987. Efficient methods for attachment of thiol specific probes to the 3′‐ends of synthetic oligodeoxyribonucleotides. Nucl. Acids Res. 15: 5305 ‐ 5321.
dc.identifier.citedreferenceZuckerman, R.N. and Schultz, P.G. 1988. A hybrid sequence‐selective ribonuclease S. J. Am. Chem. Soc. 110: 6592 ‐ 6594.
dc.identifier.citedreferenceZuckerman, R.N., Corey, D.R., and Schultz, P.G. 1988. Site‐selective cleavage of RNA by a hybrid enzyme. J. Am. Chem. Soc. 110: 1614 ‐ 1615.
dc.identifier.citedreferenceAgrawal, S. 1994. Functionalization of oligonucleotides with amino groups and attachment of amino specific reporter groups. In Protocols for Oligonucleotide Conjugates, Vol. 26: Synthesis and Analytical Techniques, pp. 93 ‐ 120. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceArar, K., Monsigny, M., and Mayer, R. 1993. Synthesis of oligonucleotide‐peptide conjugates containing a KDEL signal sequence. Tetrahedron Lett. 34: 8087 ‐ 8090.
dc.identifier.citedreferenceAsseline, U., Bonfils, E., Kurfurst, R., Chassignol, M., Roig, V., and Thuong, N.T. 1992. Solid‐phase preparation of 5′,3′‐heterobifunctional oligodeoxyribonucleotides using modified solid supports. Tetrahedron 48: 1233 ‐ 1254.
dc.identifier.citedreferenceAvino, A., Garcia, R.G., Diaz, A., Albericio, F., and Eritja, R. 1996. A comparative study of supports for the synthesis of oligonucleotides without using ammonia. Nucleosides Nucleotides 15: 1871 ‐ 1889.
dc.identifier.citedreferenceBasu, S. and Wickstrom, E. 1995. Solid phase synthesis of a D ‐peptide‐phosphorothioate oligodeoxynucleotide conjugate from two arms of a polyethylene glycol‐polystyrene support. Tetrahedron Lett. 36: 4943 ‐ 4946.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1993. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49: 1925 ‐ 1963.
dc.identifier.citedreferenceBellon, L., Workman, C., Scherrer, J., Usman, N., and Wincott, F. 1996. Morpholino linked ribozymes: A convergent synthetic approach. J. Am. Chem. Soc. 118: 3771 ‐ 3772.
dc.identifier.citedreferenceBellon, L., Workman, C., Jarvis, T.C., and Wincott, F.E. 1997. Post‐synthetically ligated ribozymes: An alternative approach to iterative solid‐phase synthesis. Bioconjugate Chem. 8: 204 ‐ 212.
dc.identifier.citedreferenceBischoff, R., Coull, J.M., and Regnier, F.E. 1987. Introduction of 5′‐terminal functional groups into synthetic oligonucleotides for selective immobilization. Anal. Biochem. 164: 336 ‐ 344.
dc.identifier.citedreferenceBonfils, E. and Thuong, N.T. 1991. Solid phase synthesis of 5′, 3′‐bifunctional oligodeoxyribonucleotides bearing a masked thiol group at the 3′‐end. Tetrahedron Lett. 32: 3053 ‐ 3056.
dc.identifier.citedreferenceBonfils, E., Depierreux, C., Midoux, P., Thuong, N.T., Monsigny, M., and Roche, A.C. 1992. Drug targeting: Synthesis and endocytosis of oligonucleotide‐neoglycoprotein conjugates. Nucl. Acids Res. 20: 4621 ‐ 4629.
dc.identifier.citedreferenceBoutorine, A.S., Brault, D., Takasugi, M., Delgado, O., and Helene, C. 1996. Chlorin‐oligonucleotide conjugates: Synthesis, properties, and red light‐induced photochemical sequence‐specific DNA cleavage in duplexes and triplexes. J. Am. Chem. Soc. 118: 9469 ‐ 9476.
dc.identifier.citedreferenceBruick, R.K., Dawson, P.E., Kent, S.B.H., Usman, N., and Joyce, G.F. 1996. Template‐directed ligation of peptides to oligonucleotides. Chem. Biol. 3: 49 ‐ 56.
dc.identifier.citedreferenceCaviani Pease, A., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. 1994. Light‐generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A. 91: 5022 ‐ 5026.
dc.identifier.citedreferenceChee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S., and Fodor, S.P.A. 1996. Accessing genetic information with high‐density DNA arrays. Science 274: 610 ‐ 614.
dc.identifier.citedreferenceChrisey, L.A., Lee, G.U., and O’Ferrall, C.E. 1996a. Covalent attachment of synthetic DNA to self‐assembled monolayer films. Nucl. Acids Res. 24: 3031 ‐ 3039.
dc.identifier.citedreferenceChrisey, L.A., O’Ferrall, C.E., Spargo, B.J., Dulcey, C.S., and Calvert, J.M. 1996b. Fabrication of patterned DNA surfaces. Nucl. Acids Res. 24: 3040 ‐ 3047.
dc.identifier.citedreferenceCohen, G., Deutsch, J., Fineberg, J., and Levine, A. 1997. Covalent attachment of DNA oligonucleotides to glass. Nucl. Acids Res. 25: 911 ‐ 912.
dc.identifier.citedreferencede la Torre, B.G., Avino, A., Tarrason, G., Piulats, J., Albericio, F., and Eritja, R. 1994. Stepwise solid‐phase synthesis of oligonucleotide‐peptide hybrids. Tetrahedron Lett. 35: 2733 ‐ 2736.
dc.identifier.citedreferenceDell’Aquila, C., Imbach, J.‐L., and Rayner, B. 1997. Photolabile linker for the solid‐phase synthesis of base‐sensitive oligonucleotides. Tetrahedron Lett. 38: 5289 ‐ 5292.
dc.identifier.citedreferenceDrmanac, R., Drmanac, S., Strezoska, Z., Paunesku, T., Labat, I., Zeremski, M., Snoddy, J., Funkhouser, W.K., Koop, B., Hood, L., and Crkvenjakov, R. 1993. DNA sequence determination by hybridization: A strategy for efficient large‐scale sequencing. Science 260: 1649 ‐ 1652.
dc.identifier.citedreferenceElghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A. 1997. Selective colorimetric detection of polynucleotides based on the distance‐dependent optical properties of gold nanoparticles. Science 277: 1078 ‐ 1081.
dc.identifier.citedreferenceErout, M.‐N., Troesch, A., Pichot, C., and Cros, P. 1996. Preparation of conjugates between oligonucleotides and N ‐vinylpyrrolidine/ N ‐acryloxysuccinimide copolymers and applications in nucleic acids assays to improve sensitivity. Bioconjugate Chem. 7: 568 ‐ 575.
dc.identifier.citedreferenceFidanza, J.A., Ozaki, H., and McLaughlin, L.W. 1994. Functionalization of oligonucleotides by the incorporation of thio‐specific reporter groups. In Protocols for Oligonucleotide Conjugates, Vol. 26: Synthesis and Analytical Techniques ( S. Agrawal, ed.) pp. 121 ‐ 143. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceGhosh, S.S. and Musso, G.F. 1987. Covalent attachment of oligonucleotides to solid supports. Nucl. Acids Res. 15: 5353 ‐ 5372.
dc.identifier.citedreferenceGoodchild, J. 1990. Conjugates of oligonucleotides and modified oligonucleotides: A review of their synthesis and properties. Bioconjugate Chem. 1: 165 ‐ 187.
dc.identifier.citedreferenceGoodwin, J.T. and Lynn, D.G. 1992. Template‐directed synthesis: Use of a reversible reaction. J. Am. Chem. Soc. 114: 9197 ‐ 9198.
dc.identifier.citedreferenceGottikh, M., Asseline, U., and Thuong, N.T. 1990. Synthesis of oligonucleotides containing a carboxyl group at either their 5′ end or their 3′ end and their subsequent derivatization by an intercalating agent. Tetrahedron Lett. 31: 6657 ‐ 6660.
dc.identifier.citedreferenceGreenberg, M.M. and Gilmore, J.L. 1994. Cleavage of oligonucleotides from solid‐phase supports using o ‐nitrobenzyl photochemistry. J. Org. Chem. 59: 746 ‐ 753.
dc.identifier.citedreferenceGreenberg, M.M., Matray, T.J., Kahl, J.D., Dong, J.Y., and McMinn, D.L. 1998. Optimization and mechanistic analysis of oligonucleotide cleavage from palladium‐labile solid‐phase synthesis supports. J. Org. Chem. 63: 4062 ‐ 4068.
dc.identifier.citedreferenceGryaznov, S.M. and Letsinger, R.L. 1992. A new approach to synthesis of oligonucleotides with 3′ phosphoryl groups. Tetrahedron Lett. 33: 4127 ‐ 4128.
dc.identifier.citedreferenceGryaznov, S.M. and Letsinger, R.L. 1993a. Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. Nucl. Acids Res. 21: 1403 ‐ 1408.
dc.identifier.citedreferenceGryaznov, S.M. and Letsinger, R.L. 1993b. Chemical ligation of oligonucleotides in the presence and absence of a template. J. Am. Chem. Soc. 115: 3808 ‐ 3809.
dc.identifier.citedreferenceGryaznov, S.M., Schultz, R., Chaturvedi, S.K., and Letsinger, R.L. 1994. Enhancement of selectivity in recognition of nucleic acids via chemical autoligation. Nucl. Acids Res. 22: 2366 ‐ 2369.
dc.identifier.citedreferenceGupta, K.C., Sharma, P., Sathyanarayana, S., and Kumar, P. 1990. A universal solid support for the synthesis of 3′‐thiol group containing oligonucleotides. Tetrahedron Lett. 31: 2471 ‐ 2474.
dc.identifier.citedreferenceGupta, K.C., Sharma, P., Kumar, P., and Sathyanarayana, S. 1991. A general method for the synthesis of 3′‐sulfhydryl and phosphate group containing oligonucleotides. Nucl. Acid Res. 19: 3019 ‐ 3025.
dc.identifier.citedreferenceGuzaev, A. and Lönnberg, H. 1997. A novel solid support for synthesis 3′‐phosphorylated chimeric oligonucleotides containing internucleosidic methyl phosphotriester and methylphosphonate linkages. Tetrahedron Lett. 38: 3989 ‐ 3992.
dc.identifier.citedreferenceHaralambidis, J., Duncan, L., Angus, K., and Tregear, G.W. 1990a. The synthesis of polyamide‐‐oligonucleotide conjugate molecules. Nucl. Acids Res. 18: 493 ‐ 499.
dc.identifier.citedreferenceHaralambidis, J., Angus, K., Pownall, S., Duncan, L., Chai, M., and Tregear, G.W. 1990b. The preparation of polyamide‐oligonucleotide probes containing multiple non‐radioactive labels. Nucl. Acids Res. 18: 501 ‐ 505.
dc.identifier.citedreferenceHaralambidis, J., Lagniton, L., and Tregear, G.W. 1994. The preparation of enzyme‐labelled oligonucleotides by reductive amination. Bioorg. Med. Chem. Lett. 4: 1005 ‐ 1010.
dc.identifier.citedreferenceHarrison, J.G. and Balasubramanian, S. 1997. A convenient synthetic route to oligonucleotide conjugates. Bioorg. Med. Chem. Lett. 7: 1041 ‐ 1046.
dc.identifier.citedreferenceHovinen, J., Gouzaev, A.P., Azhayev, A.V., and Lönnberg, H. 1993a. A new method to prepare 3′‐modified oligonucleotides. Tetrahedron Lett. 34: 5163 ‐ 5166.
dc.identifier.citedreferenceHovinen, J., Guzaev, A., Azhayev, A., and Lönnberg, H. 1993b. Synthesis of 3′‐functionalized oligonucleotides on a single solid support. Tetrahedron Lett. 34: 8169 ‐ 8172.
dc.identifier.citedreferenceHovinen, J., Guzaev, A., Azhayev, A., and Lönnberg, H. 1994. Novel solid supports for the preparation of 3′‐derivatized oligonucleotides: introduction of 3′‐alkylphosphate tether groups bearing amino, carboxy, carboxamido, and mercapto functionalities. Tetrahedron 50: 7203 ‐ 7218.
dc.identifier.citedreferenceHovinen, J., Guzaev, A., Azhayeva, E., Azhayev, A., and Lönnberg, H. 1995. Imidazole tethered oligodeoxyribonucleotides: Synthesis and RNA cleaving activity. J. Org. Chem. 60: 2205 ‐ 2209.
dc.identifier.citedreferenceJaschke, A., Furste, J.P., Dieter, C., and Volker, A.E. 1993. Automated incorporation of polythylene glycol into synthetic oligonucleotides. Tetrahedron Lett. 34: 301 ‐ 304.
dc.identifier.citedreferenceJuby, C.D., Richardson, C.D., and Brousseau, R. 1991. Facile preparation of 3′ oligonucleotide‐peptide conjugates. Tetrahedron Lett. 32: 879 ‐ 882.
dc.identifier.citedreferenceKahl, J.D. and Greenberg, M.M. 1999. Solution phase bioconjugate synthesis using protected oligonucleotides containing 3′‐alkyl carboxylic acids. J. Org. Chem. 64: 507 ‐ 510.
dc.identifier.citedreferenceKahl, J.D., McMinn, D.L., and Greenberg, M.M. 1998. High‐yielding method for on‐column derivatization of protected oligodeoxynucleotides and its application to the convergent synthesis of 5′,3′‐bis‐conjugates. J. Org. Chem. 63: 4870 ‐ 4871.
dc.identifier.citedreferenceKumar, A. 1993a. A rapid solid phase method for the synthesis of 3′‐thiol group containing oligonucleotides. Nucleosides Nucleotides 12: 729 ‐ 736.
dc.identifier.citedreferenceKumar, A. 1993b. A versatile solid phase method for the synthesis of masked 3′‐thiol group containing oligonucleotides. Nucleosides Nucleotides 12: 1047 ‐ 1059.
dc.identifier.citedreferenceLamture, J.B., Beattie, K.L., Burke, B.E., Eggers, M.D., Ehrilch, D.J., Fowler, R., Hollis, M.A., Kosicki, B.B., Reich, R.K., Smith, S.R., Varma, R.S., and Hogan, M.E. 1994. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucl. cids Res. 22: 2121 ‐ 2125.
dc.identifier.citedreferenceLeonetti, J.P., Rayner, B., Lemaitre, M., Gagnor, C., Milhaud, P.G., Imbach, J.‐L., and Lebleu, B. 1988. Antiviral activity of conjugates between poly( L ‐lysine) and synthetic oligodeoxyribonucleotides. Gene 72: 323 ‐ 332.
dc.identifier.citedreferenceLeonetti, J.‐P., Degols, G., and Lebleu, B. 1990. Biological activity of oligonucleotide‐poly( L ‐lysine) conjugates: Mechanism of cell uptake. Bioconjugate Chem. 1: 149 ‐ 153.
dc.identifier.citedreferenceLetsinger, R.L., Zhang, G., Sun, D.K., Ikeuchi, T., and Sarin, P.S. 1989. Cholesteryl‐conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficieny virus in cell culture. Proc. Natl. Acad. Sci. U.S.A. 86: 6553 ‐ 6556.
dc.identifier.citedreferenceLukhtanov, E.A., Podyminogin, M.A., Kutyavin, I.V., Meyer, R.B. Jr., and Gamper, H.B. 1996. Rapid and efficient hybridization‐triggered crosslinking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole. Nucl. Acids Res. 24: 683 ‐ 687.
dc.identifier.citedreferenceLund, V., Schmid, R., Rickwood, D., and Hornes, E. 1988. Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions. Nucl. Acids Res. 16: 10861 ‐ 10880.
dc.identifier.citedreferenceLyttle, M.H., Adams, H., Hudson, D., and Cook, R.M. 1997. Versatile linker chemistry for synthesis of 3′‐modified DNA. Bioconjugate Chem. 8: 193 ‐ 198.
dc.identifier.citedreferenceMacKellar, C., Graham, D., Will, D.W., Burgess, S., and Brown, T. 1992. Synthesis and physical properties of anti‐HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucl. Acids Res. 20: 3411 ‐ 3417.
dc.identifier.citedreferenceMaskos, U. and Southern, E.M. 1992. Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. Nucl. Acids Res. 20: 1675 ‐ 1678.
dc.identifier.citedreferenceMatray, T.J., Dong, J.Y., McMinn, D.L., and Greenberg, M.M. 1997. Synthesis of oligonucleotides containing 3′‐alkylcarboxylic acids using a palladium labile oligonucleotide solid phase synthesis support. Bioconjugate Chem. 8: 99 ‐ 102.
dc.identifier.citedreferenceMcGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. 1996. Light‐directed synthesis of high‐density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. U.S.A. 93: 13555 ‐ 13560.
dc.identifier.citedreferenceMcMinn, D.L. and Greenberg, M. M. 1996. Novel solid phase synthesis supports for the preparation of oligonucleotides containing 3′‐alkyl amines. Tetrahedron 52: 3827 ‐ 3840.
dc.identifier.citedreferenceMcMinn, D.L. and Greenberg, M.M. 1997. Synthesis of oligonucleotides containing 3′‐alkyl amines using N ‐isobutyryl protected deoxyadenosine phosphoramidite. Tetrahedron Lett. 38: 3123 ‐ 3126.
dc.identifier.citedreferenceMcMinn, D.L. and Greenberg, M.M. 1998. Postsynthetic conjugation of protected oligonucleotides containing 3’‐alkylamines. J. Am. Chem. Soc. 120: 3289 ‐ 3294.
dc.identifier.citedreferenceMcMinn, D.L. and Greenberg, M.M. 1999. Convergent solution‐phase synthesis of a nucleopeptide using a protected oligonucleotide. Bioorg. Med. Chem. Lett. 9: 547 ‐ 550.
dc.identifier.citedreferenceMcMinn, D.L., Matray, T.J., and Greenberg, M.M. 1997. Efficient solution phase synthesis of oligonucleotide conjugates using protected biopolymers containing 3′‐terminal alkyl amines. J. Org. Chem. 62: 7074 ‐ 7075.
dc.identifier.citedreferenceMcMinn, D.L., Hirsch, R., and Greenberg, M.M. 1998. An orthogonal solid phase support for the synthesis of oligonucleotides containing 3′‐phosphates and its application in the preparation of photolabile hybridization probes. Tetrahedron Lett. 39: 4155 ‐ 4158.
dc.identifier.citedreferenceMukaiyama, T. 1976. Oxidation‐reduction condensation. Angew. Chem. Int. Ed. Engl. 15: 94 ‐ 103.
dc.identifier.citedreferenceMullah, B. and Andrus, A. 1997. Automated synthesis of double dye‐labeled oligonucleotides using tetramethylrhodamine (TAMRA) solid supports. Tetrahedron Lett. 38: 5751 ‐ 5754.
dc.identifier.citedreferenceNelson, P., Frye, R.A., and Liu, E. 1989. Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations. Nucl. Acids Res. 17: 7187 ‐ 7194.
dc.identifier.citedreferenceNelson, P.S., Kent, M., and Muthini, S. 1992. Oligonucleotide labeling methods. 3. Direct labeling of oligonucleotides employing a novel, non‐nucleosidic, 2‐aminobutyl‐1,3‐propanediol backbone. Nucl. Acids Res. 20: 6253 ‐ 6259.
dc.identifier.citedreferenceNelson, P., Muthini, S., Kent, M.A., and Smith, T.H. 1997. 3′‐Terminal modification of oligonucleotides using a universal solid support. Nucleosides Nucleotides 16: 1951 ‐ 1959.
dc.identifier.citedreferenceNielsen, J., Brenner, S., and Janda, K.D. 1993. Synthetic methods for the implementation of encoded combinatorial chemistry. J. Am. Chem. Soc. 115: 9812 ‐ 9813.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.