Show simple item record

Overview of the Synthesis of Nucleoside Phosphates and Polyphosphates

dc.contributor.authorJohnson, David C.
dc.contributor.authorWidlanski, Theodore S.
dc.date.accessioned2020-01-13T15:09:18Z
dc.date.available2020-01-13T15:09:18Z
dc.date.issued2003-12
dc.identifier.citationJohnson, David C.; Widlanski, Theodore S. (2003). "Overview of the Synthesis of Nucleoside Phosphates and Polyphosphates." Current Protocols in Nucleic Acid Chemistry 15(1): 13.1.1-13.1.31.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152758
dc.description.abstractThis overview summarizes methodology used for the synthesis of nucleoside mono‐, di‐, and triphosphates. Selected techniques such as the Mitsunobu reaction, displacement reactions involving nucleoside 5′‐tosylates, “anion‐exchange” techniques, and phosphoramidite and phosphoramidate methodologies are highlighted. The chemistry of phosphorylation is detailed with respect to advantages and limitations under various conditions. Applicability of the methods toward the synthesis of analogs such as imidophosphates, phosphorothioates, and radiolabeled nucleotides is also addressed.
dc.publisherWiley‐Interscience
dc.subject.othernucleotide review
dc.subject.othernucleoside diphosphate
dc.subject.othernucleoside triphosphate
dc.subject.othernucleotide synthesis
dc.subject.otherphosphorothioate
dc.subject.otherimidophosphate
dc.subject.othernucleoside monophosphate
dc.titleOverview of the Synthesis of Nucleoside Phosphates and Polyphosphates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152758/1/cpnc1301.pdf
dc.identifier.doi10.1002/0471142700.nc1301s15
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceSekura, R.D. 1981. [53] Adenosine 3′‐phosphate 5′‐phosphosulfate. In Detoxification and Drug Metabolism: Conjugation and Related Systems ( W.B. Jakoby, ed.)pp. 413 ‐ 415. Academic Press, New York.
dc.identifier.citedreferenceSaffhill, R. 1970. Selective phosphorylation of the cis ‐2′,3′‐diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 35: 2881 ‐ 2883.
dc.identifier.citedreferenceSchneider, B., Babolat, M., Xu, Y.W., Janin, J., Vernon, M., and Deville‐Bonne, D. 2001. Mechanism of phosphoryl transfer by nucleoside diphosphate kinase. Eur. J. Biochem. 268: 1964 ‐ 1971.
dc.identifier.citedreferenceSekine, M., Ohkubo, A., and Seio, K. 2003. Proton‐block strategy for the synthesis of oligodeoxynucleotides without base protection, capping reaction and P‐N bond cleavage reaction. J. Org. Chem. 68: 5478 ‐ 5492.
dc.identifier.citedreferenceSimoncsits, A. and Tomasz, J. 1975. Simple one‐step synthesis of ribonucleoside 2′,3′‐cyclic phosphate 5′‐phosphates. Biochim. Biophys. Acta 395: 74 ‐ 79.
dc.identifier.citedreferenceSmith, M., Drummond, G.I., and Khorana, H.G. 1961. Cyclic phosphates. IV. Ribonucleoside‐3′,5′ cyclic phosphates. A general method of synthesis and some properties. J. Am. Chem. Soc. 83: 698 ‐ 706.
dc.identifier.citedreferenceStec, W.J. 1983. Wadsworth‐Emmons reaction revisited. Acc. Chem. Res. 16: 411 ‐ 417.
dc.identifier.citedreferenceStock, J.A. 1979. Synthesis of phosphonate analogues of thymidine di‐ and triphosphate from 5′‐ O ‐toluenesulfonylthymidine. J. Org. Chem. 44: 3997 ‐ 4000.
dc.identifier.citedreferenceStowell, J.K. and Widlanski, T.S. 1995. Mechanism‐based inactiviation of ribonuclease A. J. Org. Chem. 60: 6930 ‐ 6936.
dc.identifier.citedreferenceStromberg, R. and Stawinski, J. 1987. Iodide and iodine catalysed phosphorylation of nucleosides by phosphorodiester derivatives. Nucleosides & Nucleotides 6: 815 ‐ 820.
dc.identifier.citedreferenceSymons, R.H. 1970. Practical methods for the routine chemical synthesis of 32 P‐labelled nucleoside di‐ and triphosphates. Biochim. Biophys. Acta 209: 296 ‐ 305.
dc.identifier.citedreferenceSymons, R.H. 1974. Synthesis of [α‐ 32 P]ribo‐ and deoxyribonucleoside 5′‐triphosphates. Methods Enzymol. 29: 102 ‐ 115.
dc.identifier.citedreferenceThomson, J.B., Patel, B.K., Jimenez, V., Eckart, K., and Eckstein, F. 1996. Synthesis and properties of diuridine phosphate analogues containing thio and amino modifications. J. Org. Chem. 61: 6273 ‐ 6281.
dc.identifier.citedreferenceTodd, A. 1958. Synthesis in the study of nucleotides. Science 127: 787 ‐ 792.
dc.identifier.citedreferenceTomasz, J., Vaghefi, M.M., Ratsep, P.C., Willis, R.C., and Robins, R.K. 1988. Nucleoside imidodiphosphate synthesis and biological activities. Nucl. Acids Res. 16: 8645 ‐ 8664.
dc.identifier.citedreferenceTrevisiol, E., Defrancq, E., Lhomme, J., Laayoun, A., and Cros, P. 2000. Synthesis of nucleoside triphosphates that contain an aminooxy function for “Post‐Amplification Labeling”. Eur. J. Org. Chem. 1: 211 ‐ 217.
dc.identifier.citedreferenceTsuhako, M., Fujimoto, M., Ohashi, S., Nariai, H., and Motooka, I. 1984. Phosphorylation of nucleosides with sodium cyclo ‐triphosphate. Bull. Chem. Soc. Jpn. 57: 3274 ‐ 3280.
dc.identifier.citedreferenceUchiyama, M., Aso, Y., Noyori, R., and Hayakawa, Y. 1993. O ‐selective phosphorylation of nucleosides without N ‐protection. J. Org. Chem. 58: 373 ‐ 379.
dc.identifier.citedreferenceUsher, D.A., Richardson, D.I. Jr., and Eckstein, F. 1970. Absolute stereochemistry of the second step of ribonuclease action. Nature 228: 663 ‐ 665.
dc.identifier.citedreferenceVan Rompay, A.R., Johansson, M., and Karlsson, A. 2000. Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol. Ther. 87: 189 ‐ 198.
dc.identifier.citedreferenceVerheyden, J.P.H. and Moffatt, J.G. 1970. Halo sugar nucleosides. I. Iodination of the primary hydroxyl groups of nucleosides with methyltriphenoxyphosphonium iodide. J. Org. Chem. 35: 2319 ‐ 2326.
dc.identifier.citedreferenceWalseth, T.F. and Johnson, R.A. 1979. The enzymatic preparation of [α‐ 32 P]nucleoside triphosphates, cyclic [ 32 P]AMP, and cyclic [ 32 P]GMP. Biochim. Biophys. Acta 526: 11 ‐ 31.
dc.identifier.citedreferenceWalseth, T.F., Yuen, P.S.T., and Moos, M.C. Jr. 1991. Preparation of α‐ 32 P‐labeled nucleoside triphosphates, nicotinamide adenine dinucleotide, and cyclic nucleotides for use in determining adenylyl and guanylyl cyclases and cyclic nucleotide phosphodiesterase. Methods Enzymol. 195: 29 ‐ 44.
dc.identifier.citedreferenceWerhli, W.E., Verheydden, D.L.M., and Moffatt, J.G. 1965. Dismutation reactions of nucleoside polyphosphates. II. Specific chemical syntheses of α‐, β‐, and γ‐ 32 P‐nucleoside 5′‐triphosphates. J. Am. Chem. Soc. 87: 2265 ‐ 2277.
dc.identifier.citedreferenceWu, Y., Fa, M., Tae, E.L., Schultz, P.G., and Romesberg, F.E. 2002. Enzymatic phosphorylation of unnatural nucleosides. J. Am. Chem. Soc. 124: 14626 ‐ 14630.
dc.identifier.citedreferenceWu, W., Bergstrom, D.E., and Davisson, V.J. 2003. A combination chemical and enzymatic approach for the preparation of azole carboxamide nucleoside triphosphate. J. Org. Chem. 68: 3860 ‐ 3865.
dc.identifier.citedreferenceYoshikawa, M., Kato, T., and Takenishi, T. 1967. A novel method for phosphorylation of nucleosides to 5′‐nucleotides. Tetrahedron Lett. 50: 5065 ‐ 5068.
dc.identifier.citedreferenceYount, R.G., Babcock, D., Ballantyne, W., and Ojala, D. 1971. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P‐N‐P linkage. Biochemistry 10: 2484 ‐ 2489.
dc.identifier.citedreferenceZemlicka, J. 2002. Lipophilic phosphoramidates as antiviral pronucleotides. Biochim. Biophys. Acta 1587: 276 ‐ 286.
dc.identifier.citedreferenceAlbert, A. 1973. Ionization constants of pyrimidines and purines. In Synthetic Procedures in Nucleic Acid Chemistry ( W.W. Zorbach, and R.S. Tipson, eds.)pp. 1 ‐ 46. Wiley‐Interscience, New York.
dc.identifier.citedreferenceArabshahi, A. and Frey, P.A. 1994. A simplified procedure for synthesizing nucleoside 1‐thiotriphosphate: dATP α S, dGTP α S, UTP α S, and dTTP α S. Biochem. Biophys. Res. Commun. 204: 150 ‐ 155.
dc.identifier.citedreferenceBatra, J.K., Lin, C.M., and Hamel, E. 1987. Nucleotide interconversions in microtubule protein preparations, a significant complication for accurate measurement of GTP hydrolysis in the presence of adenosine 5′‐(β,γ‐imidotriphosphate). Biochemistry 26: 5925 ‐ 5931.
dc.identifier.citedreferenceBurgess, K. and Cook, D. 2000. Syntheses of nucleoside triphosphates. Chem. Rev. 100: 2047 ‐ 2059.
dc.identifier.citedreferenceBurkart, M.D., Izumi, M., and Wong, C.‐H. 1999. Enzymatic regeneration of 3′‐phosphoadenosine‐5′‐phosphosulfate using aryl sulfotransferase for the preparative enzymatic synthesis of sulfated carbohydrates. Angew. Chem. Int. Ed. Engl. 38: 2747 ‐ 2750.
dc.identifier.citedreferenceChen, J.‐T. and Benkovic, S.J. 1983. Synthesis and separation of diastereomers of deoxynucleoside 5′‐ O ‐(1‐thio)triphosphates. Nucl. Acids Res. 11: 3737 ‐ 3751.
dc.identifier.citedreferenceChen, X., Zhang, N.‐J., Li, Y.‐M., Jiang, Y., Zhang, X., and Zhao, Y.‐F. 1997. Direct phosphorylation of nucleosides by oxyphosphorane. Tetrahedron Lett. 38: 1615 ‐ 1618.
dc.identifier.citedreferenceChenault, H.K., Simon, E.S., and Whitesides, G.M. 1988. Cofactor regeneration for enzyme‐catalysed synthesis. In Biotechnology and Genetic Engineering Reviews ( G.E. Russell, ed.)pp. 221 ‐ 270. Intercept, Wimborne, Dorset, England.
dc.identifier.citedreferenceChladek, S. and Nagyvary, J. 1972. Nucleophilic reactions of some nucleoside phosphorothioates. J. Am. Chem. Soc. 94: 2079 ‐ 2085.
dc.identifier.citedreferenceCorbridge, D.E.C. 1995. Phosphorous. An Outline of its Chemistry, Biochemistry and Uses. Elsevier, Amsterdam.
dc.identifier.citedreferenceCosstick, R. and Vyle, J.S. 1990. Synthesis and properties of dithymidine phosphate analogues containing 3′‐thiothymidine. Nucl. Acids Res. 18: 829 ‐ 835.
dc.identifier.citedreferenceDavisson, V.J., Davis, D.R., Dixit, V.M., and Poulter, C.D. 1987. Synthesis of nucleotide 5′‐diphosphates from 5′‐ O ‐tosyl nucleosides. J. Org. Chem. 52: 1794 ‐ 1801.
dc.identifier.citedreferenceDixit, V.M. and Poulter, C.D. 1984. Convenient syntheses of adenosine 5′‐diphosphate, adenosine 5′‐methylenediphosphonate, and adenosine 5′‐triphosphate. Tetrahedron Lett. 25: 4055 ‐ 4058.
dc.identifier.citedreferenceEckstein, F. 1979. Phosphorothioate analogues of nucleotides. Acc. Chem. Res. 12: 204 ‐ 210.
dc.identifier.citedreferenceEckstein, F. and Kutzke, U. 1986. Synthesis of nucleoside 3′,5′‐cyclic phosphorothioates. Tetrahedron Lett. 27: 1657 ‐ 1660.
dc.identifier.citedreferenceEngel, R. 1977. Phosphonates as analogues of natural phosphates. Chem. Rev. 77: 349 ‐ 367.
dc.identifier.citedreferenceEymery, F., Iorga, B., and Savignac, P. 1999. Synthesis of phosphonates by nucleophilic substitution at phosphorus: The S N P(V) reaction. Tetrahedron 55: 13109 ‐ 13150.
dc.identifier.citedreferenceFuruichi, Y. and Shatkin, A.J. 1977. A simple method for the preparation of [β‐ 32 P]purine nucleoside triphosphates. Nucl. Acids Res. 4: 3341 ‐ 3355.
dc.identifier.citedreferenceGenieser, H.‐G., Dostmann, W., Bottin, U., Butt, E., and Jastorff, B. 1988. Synthesis of nucleoside‐3′,5′‐cyclic phosphorothioates by cyclothiophosphorylation of unprotected nucleosides. Tetrahedron Lett. 29: 2803 ‐ 2804.
dc.identifier.citedreferenceGlonek, T., Kleps, R.A., and Myers, T.C. 1974. Cyclization of the phosphate side chain of adenosine triphosphate: Formation of monoadenosine 5′‐trimetaphosphate. Science 185: 352 ‐ 354.
dc.identifier.citedreferenceGryaznov, S.M. and Letsinger, R.L. 1991. Synthesis of oligonucleotides via monomers with unprotected bases. J. Am. Chem. Soc. 113: 5876 ‐ 5877.
dc.identifier.citedreferenceHoard, D.E. and Ott, D.G. 1965. Conversion of mono‐ and oligodeoxyribonucleotides to 5′‐triphosphates. J. Am. Chem. Soc. 87: 1785 ‐ 1788.
dc.identifier.citedreferenceHorwitz, J.P., Neenan, J.P., Misra, R.S., Rozhin, J., Huo, A., and Philips, K.D. 1977. Studies on bovine adrenal estrogen sulfotransferase III. Facile synthesis of 3′‐phospho‐ and 2′‐phosphoadenosine 5′‐phosphosulfate. Biochim. Biophys. Acta 480: 376 ‐ 381.
dc.identifier.citedreferenceHorwitz, J.P., Misra, R.S., Rozhin, J., Helmer, S., Bhuta, A., and Brooks, S.C. 1980. Studies on bovine adrenal estrogen sulfotransferase. V. Synthesis and assay of analogs of 3′‐phosphoadenosine 5′‐phosphosulfate as cosubstrates for estrogen sulfurylation. Biochim. Biophys. Acta 613: 85 ‐ 94.
dc.identifier.citedreferenceHorwitz, J.P., Neenan, J.P., Misra, R.S., Rozhin, J., Huo, A., and Philips, K.D. May 1981.U.S. patent 4,266,048.Synthesis of Analogs of 3′‐Phosphoadenosine 5′‐Phosphosulfate (PAPS). USPTO Patent Full‐Text and Image Database. USA, The United States of America as represented by the Department of Health.
dc.identifier.citedreferenceImai, J. and Torrence, P.F. 1981. Bis(2,2,2‐trichloroethyl) phosphorochloridite as a reagent for the phosphorylation of oligonucleotides: Preparation of 5′‐phosphorylated 2′,5′‐oligoadenylates. J. Org. Chem. 46: 4015 ‐ 4021.
dc.identifier.citedreferenceIyer, R., Phillips, L.R., Egan, W., Regan, J.B., and Beaucage, S.L. 1990. The automated synthesis of sulfur‐containing oligodeoxyribonucleotides using 3 H ‐1,2‐benzodithiol‐3‐one 1,1‐dioxide as a sulfur‐transfer reagent. J. Org. Chem. 55: 4693 ‐ 4699.
dc.identifier.citedreferenceJanecka, A., Panusz, H., Pankowski, J., and Koziolkiewicz, W. 1980. Chemical synthesis of nucleoside‐γ‐[ 32 P]triphosphates of high specific activity. Prep. Biochem. 10: 27 ‐ 35.
dc.identifier.citedreferenceJankowska, J., Cieslak, J., and Kraszewski, A. 1997. 9‐Fluorenemethyl H ‐phosphonothioate, a versatile reagent for the preparation of H ‐phosphonothioate, phosphorothioate, and phosphorodithioate monoesters. Tetrahedron Lett. 38: 2007 ‐ 2010.
dc.identifier.citedreferenceJankowska, J., Sobkowska, A., Cieslak, J., Sobkowski, M., Krazewski, A., Stawinski, J., and Shugar, D. 1998. Nucleoside H ‐phosphonates. 18. Synthesis of unprotected nucleoside 5′‐ H ‐phosphonates and nucleoside 5′‐ H ‐phosphonothioates and their conversion into the 5′‐phosphorothioate and 5′‐phosphorodithioate monoesters. J. Org. Chem. 63: 8150 ‐ 8156.
dc.identifier.citedreferenceJurczyk, S.C., Kodra, J.T., Park, J.‐H., Benner, S.A., and Battersby, T.R. 1999. Synthesis of 2′‐deoxyisoguanosine 5′‐triphosphate and 2′‐deoxy‐5‐methylisocytidine 5′‐triphosphate. Helv. Chim. Acta 82: 1005 ‐ 1015.
dc.identifier.citedreferenceKadokura, M., Wada, T., Urashima, C., and Sekine, M. 1997. Efficient synthesis of γ‐methyl‐capped guanosine 5′‐triphosphate as a 5′‐terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCl 2 as a catalyst in DMF under anhydrous conditions. Tetrahedron Lett. 38: 8359 ‐ 8362.
dc.identifier.citedreferenceKaufmann, G., Choder, M., and Groner, Y. 1980. Synthesis of carrier‐free β‐ 32 P‐nucleoside‐triphosphate in almost quantitative yields. Anal. Biochem. 109: 198 ‐ 202.
dc.identifier.citedreferenceKim, M.‐J. and Whitesides, G.M. 1987. Enzyme‐catalyzed synthesis of nucleoside triphosphates from nucleoside monophosphates. Appl. Biochem. Biotechnol. 16: 95 ‐ 108.
dc.identifier.citedreferenceKimura, J., Fujisawa, Y., Yoshizawa, T., Fukuda, K., and Mitsunobu, O. 1979. Studies on nucleosides and nucleotides. VII. Preparation of pyrimidine nucleoside 5′‐phosphates and N 3,5′‐purine cyclonucleosides by selective activation of the 5′‐hydroxyl group. Bull. Chem. Soc. Jpn. 52: 1191 ‐ 1196.
dc.identifier.citedreferenceKlaassen, C.D. and Boles, J.W. 1997. The importance of 3′‐phosphoadenosine 5′‐phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 11: 404 ‐ 418.
dc.identifier.citedreferenceKlein, E., Mons, S., Valleix, A., Mioskowski, C., and Lebeau, L. 2002. Synthesis of enzymatically and chemically non‐hydrolyzable analogues of dinucleoside triphosphate Ap 3 A and Gp 3 G. J. Org. Chem. 67: 146 ‐ 153.
dc.identifier.citedreferenceKovacs, T. and Otvos, L. 1988. Simple synthesis of 5‐vinyl‐ and 5‐ethynyl‐2′‐deoxyuridine‐5′‐triphosphates. Tetrahedron Lett. 29: 4525 ‐ 4528.
dc.identifier.citedreferenceLarsen, M., Willett, R., and Yount, R.G. 1969. Imidodiphosphate and pyrophosphate: Possible biological significance of similar structures. Science 166: 1510 ‐ 1511.
dc.identifier.citedreferenceLebedev, A.V., Koukhareva, I.I., Beck, T., and Vaghefi, M.M. 2001. Preparation of oligodeoxynucleotide 5′‐triphosphates using solid support approach. Nucleosides Nucleotides Nucleic Acids 20: 1403 ‐ 1409.
dc.identifier.citedreferenceLi, R., Muscate, A., and Kenyon, G.L. 1996. Synthesis, characterization, and inhibitory activities of nucleoside α,β‐imido triphosphate analogues on human immunodeficiency virus‐1 reverse transcriptase. Bioorg. Chem. 24: 251 ‐ 261.
dc.identifier.citedreferenceLin, C.‐H., Shen, G.‐J., Garcia‐Junceda, E., and Wong, C.‐H. 1995. Enzymatic synthesis and regeneration of 3′‐phosphoadenosine 5′‐phosphosulfate (PAPS) for regioselective sulfation of oligosaccharides. J. Am. Chem. Soc. 117: 8031 ‐ 8032.
dc.identifier.citedreferenceLudwig, J. 1987. A simple one flask synthesis of nucleoside 5′‐triphosphates from unprotected nucleosides via nucleoside 5′‐cyclotriphosphates. In Biophosphates and Their Analogues—Synthesis, Structure, Metabolism and Activity ( K.S. Bruzik and W.J. Stec, eds.)pp. 201 ‐ 204. Elsevier Science Publishers B V, Amsterdam.
dc.identifier.citedreferenceLudwig, J. and Eckstein, F. 1989. Rapid and efficient synthesis of nucleoside 5′‐ O ‐(1‐thiotriphosphates), 5′‐triphosphates and 2′,3′‐cyclophosphorothioates using 2‐chloro‐4 H ‐1,3,2‐benzodioxaphosphorin‐4‐one. J. Org. Chem. 54: 631 ‐ 635.
dc.identifier.citedreferenceLudwig, J. and Eckstein, F. 1991. Synthesis of nucleoside 5′‐ O ‐(1,3‐dithiotriphosphates) and 5′‐ O ‐(1,1‐dithiotriphosphates). J. Org. Chem. 56: 1777 ‐ 1783.
dc.identifier.citedreferenceMa, Q.‐F., Babbitt, P.C., and Kenyon, G.L. 1988. Adenosine 5′‐[α,β‐imido]triphosphate, a substrate for T7 RNA polymerase and rabbit muscle creatine kinase. J. Am. Chem. Soc. 110: 4060 ‐ 4061.
dc.identifier.citedreferenceMa, Q.‐F., Kenyon, G.L., and Markham, G.D. 1990. Specificity of S‐adenosylmethionine synthetase for ATP analogues mono‐ and disubstituted in bridging positions of the polyphosphate chain. Biochemistry 29: 1412 ‐ 1416.
dc.identifier.citedreferenceMcBride, L.J. and Caruthers, M.H. 1983. An investigation of several deoxynucleoside phosphoramidites. Tetrahedron Lett. 24: 245 ‐ 248.
dc.identifier.citedreferenceMichelson, A.M. 1964. Synthesis of nucleotide anhydrides by anion exchange. Biochim. Biophys. Acta 91: 1 ‐ 13.
dc.identifier.citedreferenceMishra, N.C. and Broom, A.D. 1991. A novel synthesis of nucleoside 5′‐triphosphates. J. Chem. Soc., Chem. Comm. 18: 1276 ‐ 1277.
dc.identifier.citedreferenceNairne, R.J.D., Pickering, L., and Smith, C.L. 2002. Synthesis of pyrrole carboxamide nucleotide triphosphates—putative labeled nucleotide analogues. Tetrahedron Lett. 43: 2289 ‐ 2291.
dc.identifier.citedreferenceNurminen, E.J., Mattinen, J.K., and Lonnberg, H. 1998. Kinetics and mechanism of tetrazole‐catalyzed phosphoramidite alcoholysis. J. Chem. Soc., Perkin Trans. 2: 1621 ‐ 1628.
dc.identifier.citedreferencePatel, B.K. and Eckstein, F. 1997. 5′‐Deoxy‐5′‐thioribonucleoside‐5′‐triphosphates. Tetrahedron Lett. 38: 1021 ‐ 1024.
dc.identifier.citedreferencePenningroth, S.M., Olehnik, K., and Cheung, A. 1980. ATP formation from adenyl‐5′‐yl imidodiphosphate, a nonhydrolyzable ATP analog. J. Biol. Chem. 255: 9545 ‐ 9548.
dc.identifier.citedreferenceQuin, L.D. 2000. Organophosphorus Chemistry. Wiley‐Interscience, New York.
dc.identifier.citedreferenceRegan, J.B., Phillips, L.R., and Beaucage, S.L. 1992. Large‐scale preparation of the sulfur‐transfer reagent 3 H ‐1,2‐benzodithiol‐3‐one 1,1‐dioxide. Org. Prep. Proc. Int. 24: 488 ‐ 492.
dc.identifier.citedreferenceReynolds, M.A., Gerlt, J.A., Demou, P.C., Oppenheimer, N.J., and Kenyon, G.L. 1983. 15 N and 17 O NMR studies of the proton binding sites in imidodiphosphate, tetraethyl imidodiphosphate, and adenylyl imidodiphosphate. J. Am. Chem. Soc. 105: 6475 ‐ 6481.
dc.identifier.citedreferenceRichard, J.P., Ho, H.‐T., and Frey, P.A. 1978. Synthesis of nucleoside [ 18 O]pyrophosphorothioates with chiral [ 18 O]phosphorothioate groups of known configuration. Stereochemical orientations of enzymatic phosphorylations of chiral [ 18 O]phosphorothioates. J. Am. Chem. Soc. 100: 7756 ‐ 7757.
dc.identifier.citedreferenceSaady, M., Lebeau, L., and Mioskowski, C. 1995a. Synthesis of adenosine‐5′‐phosphates and 5′‐alkylphosphonates via the Mitsunobu reaction. Tetrahedron Lett. 36: 2239 ‐ 2242.
dc.identifier.citedreferenceSaady, M., Lebeau, L., and Mioskowski, C. 1995b. Synthesis of di‐ and triphosphate ester analogs via a modified Michaelis‐Arbuzov reaction. Tetrahedron Lett. 36: 5183 ‐ 5186.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.