Show simple item record

Probing RNA Folding Pathways by RNA Fingerprinting

dc.contributor.authorWoodson, Sarah A.
dc.date.accessioned2020-01-13T15:09:30Z
dc.date.available2020-01-13T15:09:30Z
dc.date.issued2000-10
dc.identifier.citationWoodson, Sarah A. (2000). "Probing RNA Folding Pathways by RNA Fingerprinting." Current Protocols in Nucleic Acid Chemistry 2(1): 11.4.1-11.4.17.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152768
dc.description.abstractThis unit provides protocols for using native polyacrylamide gel electrophoresis to distinguish folding and unfolding conformers of RNA. It is useful for studying conformers that can exchange in a period of minutes or seconds, and that are thus difficult to study by solution‐based methods. Conformers that have been separated and immobilized in the gel matrix can be used to studying catalytic activity with or without being eluted from the gel. The method can be applied to a wide varied of catalytic RNAs and RNA‐protein complexes.
dc.publisherJohn Wiley & Sons
dc.titleProbing RNA Folding Pathways by RNA Fingerprinting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152768/1/cpnc1104.pdf
dc.identifier.doi10.1002/0471142700.nc1104s02
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceMilligan, J.F. and Uhlenbeck, O.C. 1980. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180: 51 ‐ 62.
dc.identifier.citedreferenceMoazed, D., Stern, S., and Noller, H.F. 1986. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol. 187: 399 ‐ 416.
dc.identifier.citedreferenceOrr, J.W., Hagerman, P.J., and Williamson, J.R. 1998. Protein and Mg 2+ ‐induced conformational changes in the S15 binding site of 16S ribosomal RNA. J. Mol. Biol. 275: 453 ‐ 464.
dc.identifier.citedreferencePan, J. and Woodson, S.A. 1998. Folding intermediates of a self‐splicing RNA: Mispairing of the catalytic core. J. Mol. Biol. 280: 597 ‐ 609.
dc.identifier.citedreferencePyle, A.M., McSwiggen, J.A., and Cech, T.R. 1990. Direct measurement of oligonucleotide substrate binding to wild‐type and mutant ribozymes from Tetrahymena. Proc. Natl. Acad. Sci. U.S.A. 87: 8187 ‐ 8191.
dc.identifier.citedreferenceStraney, D.C. and Crothers, D.M. 1987. Comparison of the open complexes formed by RNA polymerase at the Escherichia coli lac UV5 promoter. J. Mol. Biol. 193: 279 ‐ 292.
dc.identifier.citedreferenceTabor, S. 2000. DNA‐dependent RNA polymerases. In Current Protocols in Molecular Biology ( F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.)pp. 3.8.1 ‐ 3.8.4. John Wiley & Sons, New York.
dc.identifier.citedreferenceDavanloo, P., Rosenberg, A.H., Dunn, J.J., and Studier, F.W. 1984. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 81: 2035 ‐ 2039.
dc.identifier.citedreferenceEhresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.P., and Ehresmann, B. 1987. Probing the structure of RNAs in solution. Nucl. Acids Res. 15: 9109 ‐ 9128.
dc.identifier.citedreferenceEmerick, V.L. and Woodson, S.A. 1993. Self‐splicing of the Tetrahymena pre‐rRNA is decreased by misfolding during transcription. Biochemistry 32: 14062 ‐ 14067.
dc.identifier.citedreferenceEmerick, V.L. and Woodson, S.A. 1994. Fingerprinting the folding of a group I precursor RNA. Proc. Natl. Acad. Sci. U.S.A. 91: 9675 ‐ 9679.
dc.identifier.citedreferenceFeinbaum, R. 2000. Introduction to plasmid biology. In Current Protocols in Molecular Biology ( F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.)pp. 1.5.1 ‐ 1.5.17. John Wiley & Sons, New York.
dc.identifier.citedreferenceFried, M. and Crothers, D.M. 1981. Equilibria and kinetics of lac repressor‐operator interactions by polyacrylamide gel electrophoresis. Nucl. Acids Res. 9: 6505 ‐ 6525.
dc.identifier.citedreferenceInoue, T. and Cech, T.R. 1985. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: A technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 76: 1670 ‐ 1764.
dc.identifier.citedreferenceLaw, R., Kuwabara, M.D., Briskin, M., Fasel, N., Hermanson, G., Sigman, D.S., and Wall, R. 1987. Protein‐binding site at the immunoglobulin mu membrane polyadenylation signal: Possible role in transcription termination. Proc. Natl. Acad. Sci. U.S.A. 84: 9160 ‐ 9164.
dc.identifier.citedreferenceLeCuyer, K.A. and Crothers, D.M. 1993. The Leptomonas collosoma spliced leader RNA can switch between two alternate structural forms. Biochemistry 32: 5301 ‐ 5311.
dc.identifier.citedreferenceBranch, A.P., Benedfeld, B.J., Paul, C.P., and Robertson, H.P. 1989. Analysis of ultraviolet‐induced RNA‐RNA cross‐links: A means for probing RNA structure‐function relationships. Methods Enzymol. 180: 418 ‐ 442.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.