Show simple item record

The role of environmental exposures and the epigenome in health and disease

dc.contributor.authorPerera, Bambarendage P. U.
dc.contributor.authorFaulk, Christopher
dc.contributor.authorSvoboda, Laurie K.
dc.contributor.authorGoodrich, Jaclyn M.
dc.contributor.authorDolinoy, Dana C.
dc.date.accessioned2020-01-13T15:09:50Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:09:50Z
dc.date.issued2020-01
dc.identifier.citationPerera, Bambarendage P. U.; Faulk, Christopher; Svoboda, Laurie K.; Goodrich, Jaclyn M.; Dolinoy, Dana C. (2020). "The role of environmental exposures and the epigenome in health and disease." Environmental and Molecular Mutagenesis 61(1): 176-192.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/152782
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othertransposons, DNA methylation
dc.subject.otherTaRGET II
dc.subject.otherenvironmental epigenetics
dc.subject.otherpiRNA
dc.titleThe role of environmental exposures and the epigenome in health and disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152782/1/em22311_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152782/2/em22311.pdf
dc.identifier.doi10.1002/em.22311
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferencePlatt RN 2nd, Vandewege MW, Ray DA. 2018. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 26 ( 1–2 ): 25 – 43.
dc.identifier.citedreferenceTosar JP, Rovira C, Cayota A. 2018. Non‐coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non‐gonadal tissues. Commun Biol 1 ( 2 ): 2.
dc.identifier.citedreferenceTrevino LS, Katz TA. 2018. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology 159 ( 1 ): 20 – 31.
dc.identifier.citedreferenceWang Q, Trevino LS, Wong RL, Medvedovic M, Chen J, Ho SM, Shen J, Foulds CE, Coarfa C, O’Malley BW, et al. 2016. Reprogramming of the epigenome by MLL1 links early‐life environmental exposures to prostate cancer risk. Mol Endocrinol 30 ( 8 ): 856 – 871.
dc.identifier.citedreferenceWang T, Pehrsson EC, Purushotham D, Li D, Zhuo X, Zhang B, Lawson HA, Province MA, Krapp C, Lan Y, et al. 2018. The NIEHS TaRGET II consortium and environmental epigenomics. Nat Biotechnol 36 ( 3 ): 225 – 227.
dc.identifier.citedreferenceWaryah CB, Moses C, Arooj M, Blancafort P. 2018. Zinc fingers, TALEs, and CRISPR systems: A comparison of tools for epigenome editing. Methods Mol Biol 1767: 19 – 63.
dc.identifier.citedreferenceWaterland RA, Jirtle RL. 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23 ( 15 ): 5293 – 5300.
dc.identifier.citedreferenceWaterland RA, Kellermayer R, Laritsky E, Rayco‐Solon P, Harris RA, Travisano M, Zhang W, Torskaya MS, Zhang J, Shen L, et al. 2010. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6 ( 12 ): e1001252.
dc.identifier.citedreferenceWendt J, Rosenbaum H, Richmond TA, Jeddeloh JA, Burgess DL. 2018. Targeted bisulfite sequencing using the SeqCap Epi enrichment system. Methods Mol Biol 1708: 383 – 405.
dc.identifier.citedreferenceWinterbottom EF, Moroishi Y, Halchenko Y, Armstrong DA, Beach PJ, Nguyen QP, Capobianco AJ, Ayad NG, Marsit CJ, Li Z, et al. 2019. Prenatal arsenic exposure alters the placental expression of multiple epigenetic regulators in a sex‐dependent manner. Environ Health 18 ( 1 ): 18.
dc.identifier.citedreferenceWu S, Hivert MF, Cardenas A, Zhong J, Rifas‐Shiman SL, Agha G, Colicino E, Just AC, Amarasiriwardena C, Lin X, et al. 2017. Exposure to low levels of lead in utero and umbilical cord blood DNA methylation in project viva: An epigenome‐wide association study. Environ Health Perspect 125 ( 8 ): 087019.
dc.identifier.citedreferenceXie N, Zhou Y, Sun Q, Tang B. 2018. Novel epigenetic techniques provided by the CRISPR/Cas9 system. Stem Cells Int 2018: 7834175.
dc.identifier.citedreferenceXu GL, Bestor TH. 1997. Cytosine methylation targetted to pre‐determined sequences. Nat Genet 17 ( 4 ): 376 – 378.
dc.identifier.citedreferenceYang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. 2004. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32 ( 3 ): e38–e338.
dc.identifier.citedreferenceYang AS, Doshi KD, Choi SW, Mason JB, Mannari RK, Gharybian V, Luna R, Rashid A, Shen L, Estecio MR, et al. 2006. DNA methylation changes after 5‐aza‐2′‐deoxycytidine therapy in patients with leukemia. Cancer Res 66 ( 10 ): 5495 – 5503.
dc.identifier.citedreferenceYang X, Lay F, Han H, Jones PA. 2010. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci 31 ( 11 ): 536 – 546.
dc.identifier.citedreferenceYang X, Cheng Y, Lu Q, Wei J, Yang H, Gu M. 2015. Detection of stably expressed piRNAs in human blood. Int J Clin Exp Med 8 ( 8 ): 13353 – 13358.
dc.identifier.citedreferenceYu AM, Jian C, Yu AH, Tu MJ. 2018. RNA therapy: Are we using the right molecules. Pharmacol Ther 196: 91 – 104.
dc.identifier.citedreferenceZhang Y, Maksakova IA, Gagnier L, van de Lagemaat LN, Mager DL. 2008. Genome‐wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 4 ( 2 ): e1000007.
dc.identifier.citedreferenceZhang Y, Rohde C, Tierling S, Stamerjohanns H, Reinhardt R, Walter J, Jeltsch A. 2009. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. In: Tost J, editor. DNA Methylation: Methods and Protocols. Totowa, NJ: Humana Press. pp. 177 – 187.
dc.identifier.citedreferenceZhang Z, Yang T, Xiao J. 2018. Circular RNAs: Promising biomarkers for human diseases. EBioMedicine 34: 267 – 274.
dc.identifier.citedreferenceZhao H, Chen T. 2013. Tet family of 5‐methylcytosine dioxygenases in mammalian development. J Hum Genet 58 ( 7 ): 421 – 427.
dc.identifier.citedreferenceZhao MT, Whyte JJ, Hopkins GM, Kirk MD, Prather RS. 2014. Methylated DNA immunoprecipitation and high‐throughput sequencing (MeDIP‐seq) using low amounts of genomic DNA. Cell Reprogram 16 ( 3 ): 175 – 184.
dc.identifier.citedreferenceZhou Z, Liu H, Wang C, Lu Q, Huang Q, Zheng C, Lei Y. 2015. Long non‐coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Sci Rep 5: 15293.
dc.identifier.citedreferenceZiller MJ, Hansen KD, Meissner A, Aryee MJ. 2015. Coverage recommendations for methylation analysis by whole genome bisulfite sequencing. Nat Methods 12 ( 3 ): 230 – 232.
dc.identifier.citedreferenceZuo LJ, Wang ZR, Tan YL, Chen XN, Luo XG. 2016. piRNAs and their functions in the brain. Int J Human Genet 16 ( 1–2 ): 53 – 60.
dc.identifier.citedreferenceCanapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. 2015. Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res 147 ( 4 ): 217 – 239.
dc.identifier.citedreferenceFaulk C, Dolinoy DC. 2011. Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6 ( 7 ): 791 – 797.
dc.identifier.citedreferenceAagaard L, Rossi JJ. 2007. RNAi therapeutics: Principles, prospects and challenges. Adv Drug Deliv Rev 59 ( 2–3 ): 75 – 86.
dc.identifier.citedreferenceAccordini S, Calciano L, Johannessen A, Portas L, Benediktsdottir B, Bertelsen RJ, Braback L, Carsin AE, Dharmage SC, Dratva J, et al. 2018. A three‐generation study on the association of tobacco smoking with asthma. Int J Epidemiol 47 ( 4 ): 1106 – 1117.
dc.identifier.citedreferenceAlavian‐Ghavanini A, Lin PI, Lind PM, Risen Rimfors S, Halin Lejonklou M, Dunder L, Tang M, Lindh C, Bornehag CG, Ruegg J. 2018. Prenatal bisphenol A exposure is linked to epigenetic changes in glutamate receptor subunit gene Grin2b in female rats and humans. Sci Rep 8 ( 1 ): 11315.
dc.identifier.citedreferenceAliabadi HM, Mahdipoor P, Bisoffi M, Hugh JC, Uludag H. 2016. Single and combinational siRNA therapy of cancer cells: Probing changes in targeted and nontargeted mediators after siRNA treatment. Mol Pharm 13 ( 12 ): 4116 – 4128.
dc.identifier.citedreferenceAlvarado‐Cruz I, Sanchez‐Guerra M, Hernandez‐Cadena L, De Vizcaya‐Ruiz A, Mugica V, Pelallo‐Martinez NA, Solis‐Heredia MJ, Byun HM, Baccarelli A, Quintanilla‐Vega B. 2017. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. Mutat Res 813: 27 – 36.
dc.identifier.citedreferenceAmarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D, Saffery R, Prescott SL. 2014. Genome‐wide DNA methylation profiling identifies a folate‐sensitive region of differential methylation upstream of ZFP57‐imprinting regulator in humans. FASEB J 28 ( 9 ): 4068 – 4076.
dc.identifier.citedreferenceAnderson OS, Kim JH, Peterson KE, Sanchez BN, Sant KE, Sartor MA, Weinhouse C, Dolinoy DC. 2016. Novel epigenetic biomarkers mediating bisphenol A exposure and metabolic phenotypes in female mice. Endocrinology 158 ( 1 ): 31 – 40.
dc.identifier.citedreferenceAngrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. 2018. Epigenetic applications in adverse outcome pathways and environmental risk evaluation. Environ Health Perspect 126 ( 4 ): 045001.
dc.identifier.citedreferenceAnway MD, Cupp AS, Uzumcu M, Skinner MK. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308 ( 5727 ): 1466 – 1469.
dc.identifier.citedreferenceBaccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. 2009. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179 ( 7 ): 572 – 578.
dc.identifier.citedreferenceBaccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. 2010. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 5 ( 3 ): 222 – 228.
dc.identifier.citedreferenceBahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X. 2015. The landscape of microRNA, Piwi‐interacting RNA, and circular RNA in human saliva. Clin Chem 61 ( 1 ): 221 – 230.
dc.identifier.citedreferenceBansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, van der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA. 2017. Sex‐ and dose‐specific effects of maternal bisphenol A exposure on pancreatic islets of first‐ and second‐generation adult mice offspring. Environ Health Perspect 125 ( 9 ): .
dc.identifier.citedreferenceBao W, Kojima KK, Kohany O. 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6: 11.
dc.identifier.citedreferenceBarbot W, Dupressoir A, Lazar V, Heidmann T. 2002. Epigenetic regulation of an IAP retrotransposon in the aging mouse: Progressive demethylation and de‐silencing of the element by its repetitive induction. Nucleic Acids Res 30 ( 11 ): 2365 – 2373.
dc.identifier.citedreferenceBarouki R, Melen E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, et al. 2018. Epigenetics as a mechanism linking developmental exposures to long‐term toxicity. Environ Int 114: 77 – 86.
dc.identifier.citedreferenceBasil P, Li Q, Dempster EL, Mill J, Sham PC, Wong CC, McAlonan GM. 2014. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl Psychiatry 4: e434.
dc.identifier.citedreferenceBateson P, Barker D, Clutton‐Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, et al. 2004. Developmental plasticity and human health. Nature 430 ( 6998 ): 419 – 421.
dc.identifier.citedreferenceBeck CR, Garcia‐Perez JL, Badge RM, Moran JV. 2011. LINE‐1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12: 187 – 215.
dc.identifier.citedreferenceBen‐Moshe S, Itzkovitz S. 2019. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol.
dc.identifier.citedreferenceBernal AJ, Dolinoy DC, Huang D, Skaar DA, Weinhouse C, Jirtle RL. 2013. Adaptive radiation‐induced epigenetic alterations mitigated by antioxidants. FASEB J 27 ( 2 ): 665 – 671.
dc.identifier.citedreferenceBernstein DL, Kameswaran V, Le Lay JE, Sheaffer KL, Kaestner KH. 2015. The BisPCR2 method for targeted bisulfite sequencing. Epigenetics Chromatin 8 ( 1 ): 27.
dc.identifier.citedreferenceBhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. 2014. Bisphenol‐A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 141: 160 – 170.
dc.identifier.citedreferenceBi H, Zhou J, Wu D, Gao W, Li L, Yu L, Liu F, Huang M, Adcock IM, Barnes PJ, et al. 2015. Microarray analysis of long non‐coding RNAs in COPD lung tissue. Inflamm Res 64 ( 2 ): 119 – 126.
dc.identifier.citedreferenceBoch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL‐type III effectors. Science 326 ( 5959 ): 1509 – 1512.
dc.identifier.citedreferenceBock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A. 2010. Quantitative comparison of genome‐wide DNA methylation mapping technologies. Nat Biotechnol 28 ( 10 ): 1106 – 1114.
dc.identifier.citedreferenceBoland CR. 2017. Erratum to: Non‐coding RNA: It’s not junk. Dig Dis Sci 62 ( 11 ): 3260.
dc.identifier.citedreferenceBreton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield‐Maxwell L, Lurmann F, Hodis H, Avol E, et al. 2016. Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima‐media thickness in the children’s health study. Environ Health Perspect 124 ( 12 ): 1905 – 1912.
dc.identifier.citedreferenceBurdge GC, Slater‐Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. 2007. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97 ( 3 ): 435 – 439.
dc.identifier.citedreferenceBurnett JC, Rossi JJ, Tiemann K. 2011. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6 ( 9 ): 1130 – 1146.
dc.identifier.citedreferenceBurris HH, Rifas‐Shiman SL, Baccarelli A, Tarantini L, Boeke CE, Kleinman K, Litonjua AA, Rich‐Edwards JW, Gillman MW. 2012. Associations of LINE‐1 DNA methylation with preterm birth in a prospective cohort study. J Dev Orig Health Dis 3 ( 3 ): 173 – 181.
dc.identifier.citedreferenceBusato F, Dejeux E, El Abdalaoui H, Gut IG, Tost J. 2018. Quantitative DNA methylation analysis at single‐nucleotide resolution by pyrosequencing(R). Methods Mol Biol 1708: 427 – 445.
dc.identifier.citedreferenceCamacho J, Truong L, Kurt Z, Chen YW, Morselli M, Gutierrez G, Pellegrini M, Yang X, Allard P. 2018. The memory of environmental chemical exposure in C. elegans is dependent on the Jumonji demethylases jmjd‐2 and jmjd‐3/utx‐1. Cell Rep 23 ( 8 ): 2392 – 2404.
dc.identifier.citedreferenceCano‐Rodriguez D, Gjaltema RA, Jilderda LJ, Jellema P, Dokter‐Fokkens J, Ruiters MH, Rots MG. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context‐dependent manner. Nat Commun 7: 12284.
dc.identifier.citedreferenceCardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, Marsit CJ. 2015. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 10 ( 6 ): 508 – 515.
dc.identifier.citedreferenceCarrara M, Fuschi P, Ivan C, Martelli F. 2018. Circular RNAs: Methodological challenges and perspectives in cardiovascular diseases. J Cell Mol Med 22 ( 11 ): 5176 – 5187.
dc.identifier.citedreferenceCarvan MJ 3rd, Kalluvila TA, Klingler RH, Larson JK, Pickens M, Mora‐Zamorano FX, Connaughton VP, Sadler‐Riggleman I, Beck D, Skinner MK. 2017. Mercury‐induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS One 12 ( 5 ): e0176155.
dc.identifier.citedreferenceCavalieri V, Spinelli G. 2017. Environmental epigenetics in zebrafish. Epigenetics Chromatin 10 ( 1 ): 46.
dc.identifier.citedreferenceChalbatani GM, Dana H, Memari F, Gharagozlou E, Ashjaei S, Kheirandish P, Marmari V, Mahmoudzadeh H, Mozayani F, Maleki AR, et al. 2019. Biological function and molecular mechanism of piRNA in cancer. Pract Lab Med 13: e00113.
dc.identifier.citedreferenceChen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG. 2014. Induced DNA demethylation by targeting ten‐eleven translocation 2 to the human ICAM‐1 promoter. Nucleic Acids Res 42 ( 3 ): 1563 – 1574.
dc.identifier.citedreferenceCheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, Tan DS, Robson P, Loh YH, Quake SR, et al. 2016. Single‐cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 13 ( 10 ): 833 – 836.
dc.identifier.citedreferenceChimpanzee S, Analysis C. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437 ( 7055 ): 69 – 87.
dc.identifier.citedreferenceCurtis SW, Cobb DO, Kilaru V, Terrell ML, Kennedy EM, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, et al. 2019. Exposure to polybrominated biphenyl (PBB) associates with genome‐wide DNA methylation differences in peripheral blood. Epigenetics 14 ( 1 ): 52 – 66.
dc.identifier.citedreferenceCusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, Christiansen L, DeWitt WS, et al. 2018. A single‐cell atlas of in vivo mammalian chromatin accessibility. Cell 174 ( 5 ): 1309 – 1324 e1318.
dc.identifier.citedreferenceDe Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, Di Carlo C, Di Spiezio Sardo A, De Stefano N, Ferbo U, Guida M, et al. 2015. Genome‐wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics 8: 56.
dc.identifier.citedreferenceDeininger P. 2011. Alu elements: Know the SINEs. Genome Biol 12 ( 12 ): 236.
dc.identifier.citedreferenceDeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. 2017. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67 ( 6 ): 439 – 448.
dc.identifier.citedreferenceDhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. 2018. Long non‐coding RNA: Its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 60: 25.
dc.identifier.citedreferenceDing M, Yuan C, Gaskins AJ, Field AE, Missmer SA, Michels KB, Hu F, Zhang C, Gillman MW, Chavarro J. 2017. Smoking during pregnancy in relation to grandchild birth weight and BMI trajectories. PLoS One 12 ( 7 ): e0179368.
dc.identifier.citedreferenceDolinoy DC, Weidman JR, Waterland RA, Jirtle RL. 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114 ( 4 ): 567 – 572.
dc.identifier.citedreferenceDolinoy DC, Huang D, Jirtle RL. 2007. Maternal nutrient supplementation counteracts bisphenol A‐induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104 ( 32 ): 13056 – 13061.
dc.identifier.citedreferenceDominguez‐Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fulford AJ, Guan Y, Laritsky E, Silver MJ, et al. 2014. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5: 3746.
dc.identifier.citedreferenceDupressoir A, Lavialle C, Heidmann T. 2012. From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation. Placenta 33 ( 9 ): 663 – 671.
dc.identifier.citedreferenceEads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW. 2000. MethyLight: A high‐throughput assay to measure DNA methylation. Nucleic Acids Res 28 ( 8 ): e32–e32, 320.
dc.identifier.citedreferenceEhrlich S, Lambers D, Baccarelli A, Khoury J, Macaluso M, Ho SM. 2016. Endocrine disruptors: A potential risk factor for gestational diabetes mellitus. Am J Perinatol 33 ( 13 ): 1313 – 1318.
dc.identifier.citedreferenceEkram MB, Kang K, Kim H, Kim J. 2012. Retrotransposons as a major source of epigenetic variations in the mammalian genome. Epigenetics 7 ( 4 ): 370 – 382.
dc.identifier.citedreferenceEstecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, Jelinek J, Yang AS, Yan PS, Huang TH, et al. 2007. LINE‐1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2 ( 5 ): e399.
dc.identifier.citedreferenceFalahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, Rots MG. 2013. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 11 ( 9 ): 1029 – 1039.
dc.identifier.citedreferenceFalahi F, Sgro A, Blancafort P. 2015. Epigenome engineering in cancer: Fairytale or a realistic path to the clinic? Front Oncol 5: 22.
dc.identifier.citedreferenceFaulk C, Barks A, Dolinoy DC. 2013a. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics 14: 48.
dc.identifier.citedreferenceFaulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC. 2013b. Early‐life lead exposure results in dose‐ and sex‐specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 5 ( 5 ): 487 – 500.
dc.identifier.citedreferenceFaulk C, Liu K, Barks A, Goodrich JM, Dolinoy DC. 2014. Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 9 ( 7 ): 934 – 941.
dc.identifier.citedreferenceFaulk C, Kim JH, Anderson OS, Nahar MS, Jones TR, Sartor MA, Dolinoy DC. 2016. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A. Epigenetics 11 ( 7 ): 489 – 500.
dc.identifier.citedreferenceFraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine‐Suner D, Cigudosa JC, Urioste M, Benitez J, et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102 ( 30 ): 10604 – 10609.
dc.identifier.citedreferenceFu A, Jacobs DI, Zhu Y. 2014. Epigenome‐wide analysis of piRNAs in gene‐specific DNA methylation. RNA Biol 11 ( 10 ): 1301 – 1312.
dc.identifier.citedreferenceGarrett‐Bakelman FE, Sheridan CK, Kacmarczyk TJ, Ishii J, Betel D, Alonso A, Mason CE, Figueroa ME, Melnick AM. 2015. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution. J Vis Exp ( 96 ): e52246.
dc.identifier.citedreferenceGasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109 ( 39 ): E2579–E2586.
dc.identifier.citedreferenceGhosh M, Oner D, Poels K, Tabish AM, Vlaanderen J, Pronk A, Kuijpers E, Lan Q, Vermeulen R, Bekaert B, et al. 2017. Changes in DNA methylation induced by multi‐walled carbon nanotube exposure in the workplace. Nanotoxicology 11 ( 9–10 ): 1195 – 1210.
dc.identifier.citedreferenceGilbert KM, Nelson AR, Cooney CA, Reisfeld B, Blossom SJ. 2012. Epigenetic alterations may regulate temporary reversal of CD4(+) T cell activation caused by trichloroethylene exposure. Toxicol Sci 127 ( 1 ): 169 – 178.
dc.identifier.citedreferenceGilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern‐Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al. 2013. CRISPR‐mediated modular RNA‐guided regulation of transcription in eukaryotes. Cell 154 ( 2 ): 442 – 451.
dc.identifier.citedreferenceGillette TG, Hill JA. 2015. Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circ Res 116 ( 7 ): 1245 – 1253.
dc.identifier.citedreferenceGojobori T, Li WH, Graur D. 1982. Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18 ( 5 ): 360 – 369.
dc.identifier.citedreferenceGolding J, Ellis G, Gregory S, Birmingham K, Iles‐Caven Y, Rai D, Pembrey M. 2017. Grand‐maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci Rep 7: 46179.
dc.identifier.citedreferenceGonzalez‐Nahm S, Mendez M, Robinson W, Murphy SK, Hoyo C, Hogan V, Rowley D. 2017. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3‐IG differentially methylated region in female infants. Environ Epigenet 3 ( 2 ): dvx007.
dc.identifier.citedreferenceGoodrich JM, Sanchez BN, Dolinoy DC, Zhang Z, Hernandez‐Avila M, Hu H, Peterson KE, Tellez‐Rojo MM. 2015. Quality control and statistical modeling for environmental epigenetics: A study on in utero lead exposure and DNA methylation at birth. Epigenetics 10 ( 1 ): 19 – 30.
dc.identifier.citedreferenceGraham G. 2015. Disparities in cardiovascular disease risk in the United States. Curr Cardiol Rev 11 ( 3 ): 238 – 245.
dc.identifier.citedreferenceGreathouse KL, Bredfeldt T, Everitt JI, Lin K, Berry T, Kannan K, Mittelstadt ML, Ho SM, Walker CL. 2012. Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res 10 ( 4 ): 546 – 557.
dc.identifier.citedreferenceGreer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. 2011. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479: 365 – 371.
dc.identifier.citedreferenceGroner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N, Bucher P, Trono D. 2010. KRAB‐zinc finger proteins and KAP1 can mediate long‐range transcriptional repression through heterochromatin spreading. PLoS Genet 6 ( 3 ): e1000869.
dc.identifier.citedreferenceGrunau C, Clark SJ, Rosenthal A. 2001. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res 29 ( 13 ): E65–E65, 665.
dc.identifier.citedreferenceGryder BE, Sodji QH, Oyelere AK. 2012. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4 ( 4 ): 505 – 524.
dc.identifier.citedreferenceGu Z, Jin K, Crabbe MJC, Zhang Y, Liu X, Huang Y, Hua M, Nan P, Zhang Z, Zhong Y. 2016. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein Cell 7 ( 4 ): 250 – 266.
dc.identifier.citedreferenceHan YN, Li Y, Xia SQ, Zhang YY, Zheng JH, Li W. 2017a. PIWI proteins and PIWI‐interacting RNA: Emerging roles in cancer. Cell Physiol Biochem 44 ( 1 ): 1 – 20.
dc.identifier.citedreferenceHan YN, Xia SQ, Zhang YY, Zheng JH, Li W. 2017b. Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget 8 ( 38 ): 64551 – 64563.
dc.identifier.citedreferenceHeijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. 2008. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105 ( 44 ): 17046 – 17049.
dc.identifier.citedreferenceHilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. 2015. Epigenome editing by a CRISPR‐Cas9‐based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33 ( 5 ): 510 – 517.
dc.identifier.citedreferenceHoyo C, Daltveit AK, Iversen E, Benjamin‐Neelon SE, Fuemmeler B, Schildkraut J, Murtha AP, Overcash F, Vidal AC, Wang F, et al. 2014. Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort. Epigenetics 9 ( 8 ): 1120 – 1130.
dc.identifier.citedreferenceHuang CR, Burns KH, Boeke JD. 2012a. Active transposition in genomes. Annu Rev Genet 46: 651 – 675.
dc.identifier.citedreferenceHuang RC, Galati JC, Burrows S, Beilin LJ, Li X, Pennell CE, van Eekelen J, Mori TA, Adams LA, Craig JM. 2012b. DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clin Epigenetics 4 ( 1 ): 21.
dc.identifier.citedreferenceHung PH, Van Winkle LS, Williams CJ, Hunt PA, VandeVoort CA. 2019. Prenatal bisphenol A exposure alters epithelial cell composition in the rhesus macaque fetal oviduct. Toxicol Sci 167 ( 2 ): 450 – 457.
dc.identifier.citedreferenceJinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337 ( 6096 ): 816 – 821.
dc.identifier.citedreferenceJoubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, et al. 2016. DNA methylation in newborns and maternal smoking in pregnancy: Genome‐wide consortium meta‐analysis. Am J Hum Genet 98 ( 4 ): 680 – 696.
dc.identifier.citedreferenceJunge KM, Leppert B, Jahreis S, Wissenbach DK, Feltens R, Grutzmann K, Thurmann L, Bauer T, Ishaque N, Schick M, et al. 2018. MEST mediates the impact of prenatal bisphenol A exposure on long‐term body weight development. Clin Epigenetics 10: 58.
dc.identifier.citedreferenceKaminen‐Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. 2010. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6 ( 1 ): e1000811.
dc.identifier.citedreferenceKantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, Huang ZY, Murphy S, Chiba‐Falek O. 2018. Downregulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD. Mol Ther 26: 2638 – 2649.
dc.identifier.citedreferenceKarlsson O, Baccarelli AA. 2016. Environmental health and long non‐coding RNAs. Curr Environ Health Rep 3 ( 3 ): 178 – 187.
dc.identifier.citedreferenceKazachenka A, Bertozzi TM, Sjoberg‐Herrera MK, Walker N, Gardner J, Gunning R, Pahita E, Adams S, Adams D, Ferguson‐Smith AC. 2018. Identification, characterization, and heritability of murine metastable epialleles: Implications for non‐genetic inheritance. Cell 175 ( 5 ): 1259 – 1271.e1213.
dc.identifier.citedreferenceKim KY, Kim DS, Lee SK, Lee IK, Kang JH, Chang YS, Jacobs DR, Steffes M, Lee DH. 2010. Association of low‐dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect 118 ( 3 ): 370 – 374.
dc.identifier.citedreferenceKochmanski J, Montrose L, Goodrich JM, Dolinoy DC. 2017. Environmental deflection: The impact of toxicant exposures on the aging epigenome. Toxicol Sci 156 ( 2 ): 325 – 335.
dc.identifier.citedreferenceKochmanski J, Marchlewicz EH, Cavalcante RG, Sartor MA, Dolinoy DC. 2018a. Age‐related epigenome‐wide DNA methylation and hydroxymethylation in longitudinal mouse blood. Epigenetics 13 ( 7 ): 779 – 792.
dc.identifier.citedreferenceKochmanski J, Marchlewicz EH, Dolinoy DC. 2018b. Longitudinal effects of developmental bisphenol A, variable diet, and physical activity on age‐related methylation in blood. Environ Epigenet 4 ( 3 ): dvy017.
dc.identifier.citedreferenceKochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BPU, Sartor MA, Dolinoy DC. 2018c. Longitudinal effects of developmental bisphenol A exposure on epigenome‐wide DNA hydroxymethylation at imprinted loci in mouse blood. Environ Health Perspect 126 ( 7 ): 077006.
dc.identifier.citedreferenceKonermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500 ( 7463 ): 472 – 476.
dc.identifier.citedreferenceKrauskopf J, Caiment F, van Veldhoven K, Chadeau‐Hyam M, Sinharay R, Chung KF, Cullinan P, Collins P, Barratt B, Kelly FJ, et al. 2018. The human circulating miRNome reflects multiple organ disease risks in association with short‐term exposure to traffic‐related air pollution. Environ Int 113: 26 – 34.
dc.identifier.citedreferenceKundakovic M. 2017. Sex‐specific epigenetics: Implications for environmental studies of brain and behavior. Curr Environ Health Rep 4 ( 4 ): 385 – 391.
dc.identifier.citedreferenceKung JT, Colognori D, Lee JT. 2013. Long noncoding RNAs: Past, present, and future. Genetics 193 ( 3 ): 651 – 669.
dc.identifier.citedreferenceLaRocca J, Binder AM, McElrath TF, Michels KB. 2014. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res 133: 396 – 406.
dc.identifier.citedreferenceLaRocca J, Binder AM, McElrath TF, Michels KB. 2016. First‐trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect 124 ( 3 ): 380 – 387.
dc.identifier.citedreferenceLawson HA, Cheverud JM, Wolf JB. 2013. Genomic imprinting and parent‐of‐origin effects on complex traits. Nat Rev Genet 14 ( 9 ): 609 – 617.
dc.identifier.citedreferenceLee J, Kalia V, Perera F, Herbstman J, Li T, Nie J, Qu LR, Yu J, Tang D. 2017a. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int 99: 315 – 320.
dc.identifier.citedreferenceLee MH, Cho ER, Lim JE, Jee SH. 2017b. Association between serum persistent organic pollutants and DNA methylation in Korean adults. Environ Res 158: 333 – 341.
dc.identifier.citedreferenceLi F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A. 2007. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 35 ( 1 ): 100 – 112.
dc.identifier.citedreferenceLin H. 2007. piRNAs in the germ line. Science 316 ( 5823 ): 397.
dc.identifier.citedreferenceLiu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R. 2016. Editing DNA methylation in the mammalian genome. Cell 167 ( 1 ): 233 – 247.e217.
dc.identifier.citedreferenceMaeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, et al. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE‐TET1 fusion proteins. Nat Biotechnol 31 ( 12 ): 1137 – 1142.
dc.identifier.citedreferenceMani SR, Juliano CE. 2013. Untangling the web: The diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 80 ( 8 ): 632 – 664.
dc.identifier.citedreferenceManikkam M, Guerrero‐Bosagna C, Tracey R, Haque MM, Skinner MK. 2012. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7 ( 2 ): e31901.
dc.identifier.citedreferenceManikkam M, Haque MM, Guerrero‐Bosagna C, Nilsson EE, Skinner MK. 2014. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult‐onset disease through the female germline. PLoS One 9 ( 7 ): e102091.
dc.identifier.citedreferenceMcLain AT, Faulk C. 2018. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging 10 ( 4 ): 561 – 572.
dc.identifier.citedreferenceMcLaughlin RN Jr. 2018. Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology. PLoS Biol 16 ( 3 ): e2005470.
dc.identifier.citedreferenceMendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE. 2013. Locus‐specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31 ( 12 ): 1133 – 1136.
dc.identifier.citedreferenceMicevic G, Theodosakis N, Bosenberg M. 2017. Aberrant DNA methylation in melanoma: Biomarker and therapeutic opportunities. Clin Epigenetics 9: 34.
dc.identifier.citedreferenceMiller J, McLachlan AD, Klug A. 1985. Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4 ( 6 ): 1609 – 1614.
dc.identifier.citedreferenceMiousse IR, Shao L, Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Zhou D, et al. 2014. Exposure to low‐dose (56)Fe‐ion radiation induces long‐term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 182 ( 1 ): 92 – 101.
dc.identifier.citedreferenceMitchell E, Klein SL, Argyropoulos KV, Sharma A, Chan RB, Toth JG, Barboza L, Bavley C, Bortolozzi A, Chen Q, et al. 2016. Behavioural traits propagate across generations via segregated iterative‐somatic and gametic epigenetic mechanisms. Nat Commun 7: 11492.
dc.identifier.citedreferenceMontrose L, Faulk C, Francis J, Dolinoy DC. 2017. Perinatal lead (Pb) exposure results in sex and tissue‐dependent adult DNA methylation alterations in murine IAP transposons. Environ Mol Mutagen 58 ( 8 ): 540 – 550.
dc.identifier.citedreferenceMontrose L, Padmanabhan V, Goodrich JM, Domino SE, Treadwell MC, Meeker JD, Watkins DJ, Dolinoy DC. 2018. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 13 ( 3 ): 301 – 309.
dc.identifier.citedreferenceMoran S, Arribas C, Esteller M. 2016. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8 ( 3 ): 389 – 399.
dc.identifier.citedreferenceMoscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326 ( 5959 ): 1501.
dc.identifier.citedreferenceMulligan CJ, D’Errico NC, Stees J, Hughes DA. 2012. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7 ( 8 ): 853 – 857.
dc.identifier.citedreferenceMurphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schildkraut JM, Murtha AP, Iversen ES, Hoyo C. 2012. Gender‐specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494 ( 1 ): 36 – 43.
dc.identifier.citedreferenceNarvaez DM, Groot H, Diaz SM, Palma RM, Munoz N, Cros MP, Hernandez‐Vargas H. 2017. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury. Heliyon 3 ( 9 ): e00400.
dc.identifier.citedreferenceNeier K, Cheatham D, Bedrosian LD, Dolinoy DC. 2019. Perinatal exposures to phthalates and phthalate mixtures result in sex‐specific effects on body weight, organ weights and intracisternal A‐particle (IAP) DNA methylation in weanling mice. J Dev Orig Health Dis 10 ( 2 ): 176 – 187.
dc.identifier.citedreferenceNemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. 2014. TALEN and CRISPR/Cas genome editing systems: Tools of discovery. Acta Nat 6 ( 3 ): 19 – 40.
dc.identifier.citedreferenceNewman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ. 2014. A single whole‐body low dose X‐irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally. PLoS One 9 ( 3 ): e93016.
dc.identifier.citedreferenceNilsson E, Klukovich R, Sadler‐Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. 2018. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: Ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 13 ( 8 ): 875 – 895.
dc.identifier.citedreferenceNon AL, Binder AM, Kubzansky LD, Michels KB. 2014. Genome‐wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 9 ( 7 ): 964 – 972.
dc.identifier.citedreferencePerera BPU, Ghimire S, Kim J. 2018. Circular RNA identified from Peg3 and Igf2r. PLoS One 13 ( 9 ): e0203850.
dc.identifier.citedreferencePerera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC. 2019. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue‐specific piRNA. Epigenetics 14 ( 5 ): 504 – 521.
dc.identifier.citedreferencePrice EM, Cotton AM, Penaherrera MS, McFadden DE, Kobor MS, Robinson W. 2012. Different measures of "genome‐wide" DNA methylation exhibit unique properties in placental and somatic tissues. Epigenetics 7 ( 6 ): 652 – 663.
dc.identifier.citedreferencePrins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, et al. 2014. Bisphenol A promotes human prostate stem‐progenitor cell self‐renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 155 ( 3 ): 805 – 817.
dc.identifier.citedreferenceQu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H. 2017. The emerging landscape of circular RNA in life processes. RNA Biol 14 ( 8 ): 992 – 999.
dc.identifier.citedreferenceRakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. 2002. Metastable epialleles in mammals. Trends Genet 18 ( 7 ): 348 – 351.
dc.identifier.citedreferenceRebollo R, Karimi MM, Bilenky M, Gagnier L, Miceli‐Royer K, Zhang Y, Goyal P, Keane TM, Jones S, Hirst M, et al. 2011. Retrotransposon‐induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 7 ( 9 ): e1002301.
dc.identifier.citedreferenceRehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, Akbari O, Torday JS. 2012. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 10 ( 1 ): 129.
dc.identifier.citedreferenceRomano G, Veneziano D, Acunzo M, Croce CM. 2017. Small non‐coding RNA and cancer. Carcinogenesis 38 ( 5 ): 485 – 491.
dc.identifier.citedreferenceRots MG, Jeltsch A. 2018. Editing the Epigenome: Overview, open questions, and directions of future development. Methods Mol Biol 1767: 3 – 18.
dc.identifier.citedreferenceRoy S, Trautwein C, Luedde T, Roderburg C. 2018. A general overview on non‐coding RNA‐based diagnostic and therapeutic approaches for liver diseases. Front Pharmacol 9: 805.
dc.identifier.citedreferenceRusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld‐Jorgensen EC. 2008. Global DNA hypomethylation is associated with high serum‐persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 116 ( 11 ): 1547 – 1552.
dc.identifier.citedreferenceSai L, Li L, Hu C, Qu B, Guo Q, Jia Q, Zhang Y, Bo C, Li X, Shao H, et al. 2018. Identification of circular RNAs and their alterations involved in developing male Xenopus laevis chronically exposed to atrazine. Chemosphere 200: 295 – 301.
dc.identifier.citedreferenceSales VM, Ferguson‐Smith AC, Patti M‐E. 2017. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab 25 ( 3 ): 559 – 571.
dc.identifier.citedreferenceSalzman J. 2016. Circular RNA expression: Its potential regulation and function. Trends Genet 32 ( 5 ): 309 – 316.
dc.identifier.citedreferenceSanders AP, Burris HH, Just AC, Motta V, Amarasiriwardena C, Svensson K, Oken E, Solano‐Gonzalez M, Mercado‐Garcia A, Pantic I, et al. 2015. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics 7 ( 6 ): 885 – 896.
dc.identifier.citedreferenceShimosuga KI, Fukuda K, Sasaki H, Ichiyanagi K. 2017. Locus‐specific hypomethylation of the mouse IAP retrotransposon is associated with transcription factor‐binding sites. Mob DNA 8: 20.
dc.identifier.citedreferenceSiddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M. 2014. MicroRNAs as potential biomarkers in diseases and toxicology. Mutat Res Genet Toxicol Environ Mutagen 764‐765: 46 – 57.
dc.identifier.citedreferenceSiddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A. 2013. Targeted methylation and gene silencing of VEGF‐A in human cells by using a designed Dnmt3a‐Dnmt3L single‐chain fusion protein with increased DNA methylation activity. J Mol Biol 425 ( 3 ): 479 – 491.
dc.identifier.citedreferenceSilver MJ, Kessler NJ, Hennig BJ, Dominguez‐Salas P, Laritsky E, Baker MS, Coarfa C, Hernandez‐Vargas H, Castelino JM, Routledge MN, et al. 2015. Independent genomewide screens identify the tumor suppressor VTRNA2‐1 as a human epiallele responsive to periconceptional environment. Genome Biol 16: 118.
dc.identifier.citedreferenceSkinner MK. 2015. Endocrine disruptors in 2015: Epigenetic transgenerational inheritance. Nat Rev Endocrinol 12 ( 2 ): 68 – 70.
dc.identifier.citedreferenceSkinner MK, Ben Maamar M, Sadler‐Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. 2018. Alterations in sperm DNA methylation, non‐coding RNA and histone retention associate with DDT‐induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 11 ( 1 ): 8.
dc.identifier.citedreferenceSong MA, Ernst T, Tiirikainen M, Tost J, Wilkens LR, Chang L, Kolonel LN, Le Marchand L, Lim U. 2018. Methylation of imprinted IGF2 regions is associated with total, visceral, and hepatic adiposity in postmenopausal women. Epigenetics 13 ( 8 ): 858 – 865.
dc.identifier.citedreferenceStaunstrup NH, Starnawska A, Nyegaard M, Christiansen L, Nielsen AL, Borglum A, Mors O. 2016. Genome‐wide DNA methylation profiling with MeDIP‐seq using archived dried blood spots. Clin Epigenetics 8: 81.
dc.identifier.citedreferenceSuchiman HED, Slieker RC, Kremer D, Slagboom PE, Heijmans BT, Tobi EW. 2015. Design, measurement and processing of region‐specific DNA methylation assays: The mass spectrometry‐based method EpiTYPER. Front Genet 6: 287.
dc.identifier.citedreferenceTan Y, Liu L, Liao M, Zhang C, Hu S, Zou M, Gu M, Li X. 2015. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin 47 ( 5 ): 315 – 324.
dc.identifier.citedreferenceTobi EW, Slagboom PE, van Dongen J, Kremer D, Stein AD, Putter H, Heijmans BT, Lumey LH. 2012. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 7 ( 5 ): e37933.
dc.identifier.citedreferenceTommasi S, Zheng A, Yoon JI, Li AX, Wu X, Besaratinia A. 2012. Whole DNA methylome profiling in mice exposed to secondhand smoke. Epigenetics 7 ( 11 ): 1302 – 1314.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.