Show simple item record

Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism

dc.contributor.authorChandana, Sreenivasa R.
dc.contributor.authorBehen, Michael E.
dc.contributor.authorJuhász, Csaba
dc.contributor.authorMuzik, Otto
dc.contributor.authorRothermel, Robert D.
dc.contributor.authorMangner, Thomas J.
dc.contributor.authorChakraborty, Pulak K.
dc.contributor.authorChugani, Harry T.
dc.contributor.authorChugani, Diane C.
dc.date.accessioned2020-01-13T15:10:11Z
dc.date.available2020-01-13T15:10:11Z
dc.date.issued2005-04
dc.identifier.citationChandana, Sreenivasa R.; Behen, Michael E.; Juhász, Csaba ; Muzik, Otto; Rothermel, Robert D.; Mangner, Thomas J.; Chakraborty, Pulak K.; Chugani, Harry T.; Chugani, Diane C. (2005). "Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism." International Journal of Developmental Neuroscience 23(2-3): 171-182.
dc.identifier.issn0736-5748
dc.identifier.issn1873-474X
dc.identifier.urihttps://hdl.handle.net/2027.42/152797
dc.description.abstractThe role of serotonin in prenatal and postnatal brain development is well documented in the animal literature. In earlier studies using positron emission tomography (PET) with the tracer alpha[11C]methyl‐l‐tryptophan (AMT), we reported global and focal abnormalities of serotonin synthesis in children with autism. In the present study, we measured brain serotonin synthesis in a large group of autistic children (n = 117) with AMT PET and related these neuroimaging data to handedness and language function. Cortical AMT uptake abnormalities were objectively derived from small homotopic cortical regions using a predefined cutoff asymmetry threshold (>2 S.D. of normal asymmetry). Autistic children demonstrated several patterns of abnormal cortical involvement, including right cortical, left cortical, and absence of abnormal asymmetry. Global brain values for serotonin synthesis capacity (unidirectional uptake rate constant, K‐complex) values were plotted as a function of age. K‐complex values of autistic children with asymmetry or no asymmetry in cortical AMT uptake followed different developmental patterns, compared to that of a control group of non‐autistic children. The autism groups, defined by presence or absence and side of cortical asymmetry, differed on a measure of language as well as handedness. Autistic children with left cortical AMT decreases showed a higher prevalence of severe language impairment, whereas those with right cortical decreases showed a higher prevalence of left and mixed handedness. Global as well as focal abnormally asymmetric development in the serotonergic system could lead to miswiring of the neural circuits specifying hemispheric specialization.
dc.publisherSPIE Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCortical development
dc.subject.otherLanguage
dc.subject.otherHandedness
dc.subject.otherAlpha[11C]methyl‐l‐tryptophan
dc.subject.otherSerotonin
dc.subject.otherAutism
dc.subject.otherPET
dc.subject.otherCortical asymmetry
dc.titleSignificance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152797/1/jdnjijdevneu200408002.pdf
dc.identifier.doi10.1016/j.ijdevneu.2004.08.002
dc.identifier.sourceInternational Journal of Developmental Neuroscience
dc.identifier.citedreferenceA.M. Persico, R. Militerni, C. Bravaccio, C. Schneider, R. Melmed, M. Conciatori, V. Damiani, A. Baldi, F. Keller. Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. Am. J. Med. Genet. 96 (1): 2000; 123 – 127
dc.identifier.citedreferenceC.A. Bennett‐Clark, N.L. Chiaia, R.W. Rhoades. Thalamocortical afferents in rat transiently express high‐affinity serotonin uptake sites. Brain Res. 733: 1996; 301 – 306
dc.identifier.citedreferenceO. Muzik, D.C. Chugani, C. Shen, E.A. da Silva, J. Shah, A. Shah, A. Canady, C. Watson, H.T. Chugani. Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput. Aided Surg. 3 (2): 1998; 74 – 82
dc.identifier.citedreferenceO. Muzik, E.A. Da Silva, C. Juhasz, D.C. Chugani, J. Shah, F. Nagy, A. Canady, H.M. von Stockhausen, K. Herholz, J. Gates, M. Frost, F. Ritter, C. Watson, H.T. Chugani. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology. 54 (1): 2000; 171 – 179
dc.identifier.citedreferenceR. Nabi, F.J. Serajee, D.C. Chugani, H. Zhong, A.H. Huq. Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am. J. Med. Genet. 125B (1): 2004; 63 – 68
dc.identifier.citedreferenceM.C. Osterheld‐Haas, H. Vander Loos, J.P. Hornung. Monoaminergic afferents to cortex modulate structural plasticity in the barrelfield of the mouse. Brain Res. Dev. Brain Res. 77 (2): 1994; 189 – 202
dc.identifier.citedreferenceC.S. Patlak, R.G. Blasberg, J.D. Fenstermacher. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. J. Cereb. Blood Flow Metab. 3: 1983; 1 – 7
dc.identifier.citedreferenceA. Perry, D.C. Factor. Psychometric validity and clinical usefulness of the Vineland Adaptive Behavior Scales and the AAMD Adaptive Behavior Scale for an autistic sample. J. Autism Dev. Disorder. 19: 1989; 41 – 55
dc.identifier.citedreferenceC.A. Bennett‐Clarke, M.J. Leslie, R.D. Lane, R.W. Rhoades. Effect of serotonin depletion on vibrissae‐related patterns in the rat’s somatosensory cortex. J. Neurosci. 14: 1994; 7594 – 7607
dc.identifier.citedreferenceA.M. Persico, T. Pascucci, S. Puglisi‐Allegra, R. Militerni, C. Bravaccio, C. Schneider, R. Melmed, S. Trillo, F. Montecchi, M. Palermo, D. Rabinowitz, K.L. Reichelt, M. Conciatori, R. Marino, F. Keller. Serotonin transporter gene promoter variants do not explain the hyperserotoninemia in autistic children. Mol. Psychiatry. 7 (7): 2002; 795 – 800
dc.identifier.citedreferenceA.M. Persico, A. Baldi, M.L. Dell’Acqua, R. Moessner, D.L. Murphy, K.P. Lesch, F. Keller. Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport. 14 (3): 2003; 341 – 344
dc.identifier.citedreferenceU. Pietrzyk, K. Herholz, W.D. Heiss. Three‐dimensional alignment of functional and morphologicaltomograms. J. Comput. Assist. Tomogr. 14 (1): 1990; 51 – 59
dc.identifier.citedreferenceU. Pietrzyk, K. Herholz, G. Fink, A. Jacobs, R. Mielke, I. Slansky, M. Wurker, W.D. Heiss. An interactive technique for three‐dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J. Nucl. Med. 35 (12): 1994; 2011 – 2018
dc.identifier.citedreferenceJ. Piven, P. Palmer. Psychiatric disorder and the broad autism phenotype: evidence from a family study of multiple‐incidence autism families. Am. J. Psychiatry. 56 (4): 1999; 557 – 563
dc.identifier.citedreferenceT. Rasmussen, B. Milner. The role of early left‐brain injury in determining lateralization of cerebral speech functions. Ann. NY Acad. Sci. 299: 1977; 355 – 369
dc.identifier.citedreferenceN. Salichon, P. Gaspar, A.L. Upton, S. Picaud, N. Hanoun, M. Hamon, E. De Maeyer, D.L. Murphy, R. Mossner, K.P. Lesch, R. Hen, I. Seif. Excessive activation of serotonin (5‐HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5‐ht transporter knock‐out mice. J. Neurosci. 21 (3): 2001; 884 – 896
dc.identifier.citedreferenceR.J. Schain, D.X. Freedman. Studies on 5‐hydroxyindole metabolism in autistic and other mentally retarded children. J. Pediatr. 58: 1961; 315 – 320
dc.identifier.citedreferenceH.L. Seldon. Structure of human auditor cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res. 1981; 277 – 294
dc.identifier.citedreferenceH.L. Seldon. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res. 229: 1981; 295 – 310
dc.identifier.citedreferenceH.L. Seldon. Structure of human auditory cortex. III. Statistical analysis of dendritic trees. Brain Res. 249: 1982; 211 – 221
dc.identifier.citedreferenceK. Saito, T.S. Nowak Jr., K. Suyama, B.J. Quearry, M. Saito, J.S. Crowley, S.P. Markey, M.P. Heyes. Kynurenine pathway enzymes in brain: Responses to ischemic brain injury versus systemic immune activation. J. Neurochem. 61: 1993; 2061 – 2070
dc.identifier.citedreferenceS.E. Shoaf, R. Carson, D. Hommer, W. Williams, J.D. Higley, B. Schmall, P. Herscovitch, W. Eckelman, M. Linnoila. Brain serotonin synthesis rates in rhesus monkeys determined by [ 11, C]α‐methyl‐ l, ‐tryptophan and positron emission tomography compared to CSF 5‐hydroxyindole‐3‐acetic acid concentrations. Neuropsychopharmacology. 19: 1998; 345 – 353
dc.identifier.citedreferenceS.E. Shoaf, R. Carson, D. Hommer, W. Williams, J.D. Higley, B. Schmall, P. Herscovitch, W. Eckelman, M. Linnoila. The suitability of [ 11, C]‐α‐methyl‐ l, ‐tryptophan as a tracer for serotonin synthesis: Studies with dual administration of [ 11, C] and [ 14, C] labeled tracer. J. Cereb. Blood Flow Metab. 20: 2000; 244 – 252
dc.identifier.citedreferenceSparrow, S.S., Balla, D.A., Cicchetti, D.V., 1984. The Vineland Adaptive Behavior Scales Manual. Circle Pines, MN: American Guidance Services.
dc.identifier.citedreferenceR. Stokking, H. Zuiderveld, H. Hulshoff‐Pol, M. Viergever. intergrated visualization in biomedical computing. 1994; SPIE Press: Bellingham, WA
dc.identifier.citedreferenceD.B. Stout, S.C. Huang, W.P. Melega, M.J. Raleigh, M.E. Phelps, J.R. Barrio. Effects of large neutral amino acid concentrations on 6‐[F‐18]Fluoro‐ l, ‐DOPA kinetics. J. Cereb. Blood Flow Metab. 18 (1): 1998; 43 – 51
dc.identifier.citedreferenceH. Suhonen‐Polvi, U. Ruotsalainen, A. Kinnala, J. Bergman, M. Haaparanta, M.M. Teras, P. akela, O. Solin, U. Wegelius. FDG‐PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. J. Nucl. Med. 36 (7): 1995; 1249 – 1254
dc.identifier.citedreferenceS. Suzuki, S. Tone, O. Takikawa, T. Kubo, I. Kohno, Y. Minatogawa. Expression of indoleamine 2,3‐dioxygenase and tryptophan 2,3‐dioxygenase in early concepti. Biochem. J. 355: 2001; 425 – 429
dc.identifier.citedreferenceY. Tohyama, S. Takahashi, M.F. Merid, A. Watanabe, M. Diksic. The inhibition of tryptophan hydroxylase, and not protein synthesis, reduces the brain trapping of α‐methyl‐ l, ‐tryptophan: An autoradiographic study. Neurochem. Int. 40: 2002; 603 – 610
dc.identifier.citedreferenceH. Von Stockhausen, U. Pietrzyk, K. Herholz. “3D‐Tool”—A software for visualization and analysis of coregistered multimodality volume datasets of individual subjects. Neuroimage. 7: 1998; S799
dc.identifier.citedreferenceP.M. Whitaker‐Azmitia. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull. 56 (5): 2001; 479 – 485
dc.identifier.citedreferenceW.A. Wolf, D.M. Kuhn. Uptake and release of tryptophan and serotonin: an HPLC method to study the flux of endogenous 5‐hydroxyindoles through synaptosomes. J. Neurochem. 46 (1): 1986; 61 – 67
dc.identifier.citedreferenceF. Yamazaki, T. Kuroiwa, O. Takikawa, Kido R. Human indoleamine 2,3‐dioxygenase. Biochem. J. 230: 1985; 635 – 638
dc.identifier.citedreferenceW. Yan, C.C. Wilson, J.H. Haring. Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Dev. Brain Res. 98: 1997; 177 – 184
dc.identifier.citedreferenceG.M. Anderson, D.X. Freedman, D.J. Cohen, F.R. Volkmar, E.L. Hoder, P. McPhedran, R.B. Minderaa, C.R. Hansen, J.G. Young. Whole blood serotonin in autistic and normal subjects. J. Child Psychol. Psychiatry. 28 (6): 1987; 885 – 900
dc.identifier.citedreferenceG.M. Anderson, L. Gutknecht, D.J. Cohen, S. Brailly‐Tabard, J.H. Cohen, P. Ferrari, P.L. Roubertoux, S. Tordjman. Serotonin transporter promoter variants in autism: functional effects and relationship to platelet hyperserotonemia. Mol. Psychiatry. 7 (8): 2002; 831 – 836
dc.identifier.citedreferenceD.F. Balkovetz, C. Tiruppathi, F.H. Leibach, V.B. Mahesh, V. Ganapathy. Evidence for an imipramine‐sensitive serotonin transporter in human placental brush‐border membranes. J. Biol. Chem. 264 (4): 1989 Feb 5; 2195 – 2198
dc.identifier.citedreferenceC. Betancur, M. Corbex, C. Spielewoy, A. Philippe, J.L. Laplanche, J.M. Launay, C. Gillberg, M.C. Mouren‐Simeoni, M. Hamon, B. Giros, M. Nosten‐Bertrand, M. Leboyer. Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol. Psychiatry. 7 (1): 2002; 67 – 71
dc.identifier.citedreferenceM.E. Blue, R.S. Erzurumlu, S. Jhaveri. A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb. Cortex. 1: 1991; 380 – 389
dc.identifier.citedreferenceD.P. Buxhoeveden, A.E. Switala, M. Litaker, E. Roy, M.F. Casanova. Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav. E. 57: 2001; 349 – 358
dc.identifier.citedreferenceR.A. Carper, P. Moses, Z.D. Tigue, E. Courchesne. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 16 (4): 2002; 1038 – 1051
dc.identifier.citedreferenceM.F. Casanova, D.P. Buxhoeveden, C. Brown. Clinical and macroscopic correlates of minicolumnar pathology in autism. J. Child Neurol. 17: 2002; 692 – 695
dc.identifier.citedreferenceM.F. Casanova, D.P. Buxhoeveden, A.E. Switala, E. Roy. Minicolumnar patholofy in autis. Neurology. 58: 2002; 428 – 432
dc.identifier.citedreferenceO. Cases, I. Seif, J. Grimsby, P. Gaspar, K. Chen, S. Pournin, U. Müller, M. Aguet, C. Babinet, J.C. Shih, E. De Maeyer. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 268: 1995; 1763 – 1766
dc.identifier.citedreferenceO. Cases, T. Vitalis, I. Seif, E. De Maeyer, C. Sotelo, P. Gaspar. Lack of barrels in the somatosensory cortex of monoamine oxidase A‐deficient mice: role of a serotonin excess during the critical period. Neuron. 16: 1996; 297 – 307
dc.identifier.citedreferenceP.K. Chakraborty, T.J. Mangner, D.C. Chugani, O. Muzik, H.T. Chugani. A high‐yield and simplified procedure for the synthesis of alpha‐[ 11, C]methyl‐ l, ‐tryptophan. J. label Comp. Radiopahrm. 37: 1995; 619 – 621
dc.identifier.citedreferenceP.K. Chakraborty, T.J. Mangner, D.C. Chugani, O. Muzik, H.T. Chugani. A high‐yield and simplified procedure for the synthesis of alpha‐[11C]methyl‐ l, ‐tryptophan. Nucl. Med. Biol. 23 (8): 2004; 1005 – 1008
dc.identifier.citedreferenceD.C. Chugani, O. Muzik, R. Rothermel, M. Behen, P. Chakraborty, T. Mangner, E.A. da Silva, H.T. Chugani. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann. Neurol. 42: 1997; 666 – 669
dc.identifier.citedreferenceD.C. Chugani, O. Muzik, P. Chakraborty, T. Mangner, H.T. Chugani. Human brain serotonin synthesis capacity measured in vivo with alpha‐[C‐11]methyl‐ l, ‐tryptophan. Synapse. 28 (1): 1998; 33 – 43
dc.identifier.citedreferenceD.C. Chugani, M.P. Heyes, D.M. Kuhn, H.T. Chugani. Evidence that α[C‐11]methyl‐ l, ‐tryptophan PET traces tryptophan metabolism via the kynurenine pathway in tuberous sclerosis complex. Soc. Neurosci. Abstr. 24: 1998; 1757
dc.identifier.citedreferenceD.C. Chugani, O. Muzik, M. Behen, R. Rothermel, J.J. Janisse, J. Lee, H.T. Chugani. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 45: 1999; 287 – 295
dc.identifier.citedreferenceD.C. Chugani. Role of altered brain serotonin mechanisms in autism. Mol. Psychiatry. 7 (Suppl.): 2002; S16 – S17
dc.identifier.citedreferenceD.C. Chugani, O. Muzik. α[C‐11]Methyl‐ l, ‐tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J. Cereb. Blood Flow Metab. 20: 2000; 2 – 9
dc.identifier.citedreferenceZ. Cohen, K. Tsuiki, A. Takada, A. Beaudet, M. Diksic, E. Hamel. In vivo‐synthesis radioactively labelled α‐methyl serotonin as a selective tracer for visualization of brain serotonin neurons. Synapse. 21: 1995; 21 – 28
dc.identifier.citedreferenceI.L. Cohen, X. Liu, C. Schutz, B.N. White, E.C. Jenkins, W.T. Brown, J.J. Holden. Association of autism severity with a monoamine oxidase A functional polymorphism. Clin. Genet. 64 (3): 2003; 190 – 197
dc.identifier.citedreferenceE.H. Cook Jr., B.L. Leventhal, W. Heller, J. Metz, M. Wainwright, D.X. Freedman. Autistic children and their first‐degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J. Neuropsychiatry Clin. Neurosci. 2 (3): 1990; 268 – 274
dc.identifier.citedreferenceE.H. Cook Jr., D.A. Charak, J. Arida, J.A. Spohn, N.J. Roizen, B.L. Leventhal. Depressive and obsessive–compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res. 52 (1): 1994; 25 – 33
dc.identifier.citedreferenceE. Courchesne, R. Carper, N. Akshoomoff. Evidence of brain overgrowth in the first year of life in autism. JAMA. 290 (3): 2003; 337 – 344
dc.identifier.citedreferenceE. Courchesne, C.M. Karns, H.R. Davis, R. Ziccardi, R.A. Carper, Z.D. Tigue, H.J. Chisum, P. Moses, K. Pierce, C. Lord, A.J. Lincoln, S. Pizzo, L. Schreibman, R.H. Haas, N.A. Akshoomoff, R.Y. Courchesne. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 57 (2): 2001; 245 – 254
dc.identifier.citedreferenceS. Curtiss, S. de Bode. How normal is grammatical development in the right hemisphere following hemispherectomy? The root infinite stage and beyond. Brain Lang. 86: 2003; 193 – 206
dc.identifier.citedreferenceR.J. D’Amato, M.E. Blue, B.L. Largent, D.R. Lynch, D.J. Ledbetter, M.E. Molliver, S.H. Snyder. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc. Natl. Acad. Sci. 84: 1987; 4322 – 4326
dc.identifier.citedreferenceM. Diksic, S. Nagahiro, T.L. Sourkes, Y.L. Yamamoto. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J. Cereb. Blood Flow Metab. 9: 1990; 1 – 12
dc.identifier.citedreferenceM. Diksic, S. Nagahiro, T. Chaly, T.L. Sourkes, Y.L. Yamamoto, W. Feindel. Serotonin synthesis rate measured in living dog brain by positron emission tomography. J. Neurochem. 56: 1991; 153 – 162
dc.identifier.citedreferenceM. Diksic, S.N. Young. Study of the brain serotonergic system with labeled α‐methyl‐ l, ‐tryptophan. J. Neurochem. 78: 2001; 1 – 17
dc.identifier.citedreferenceS.H. Fatemi, J.M. Stary, A.R. Halt, G.R. Realmuto. Dysregulation of Reelin and Bcl‐2 proteins in autistic cerebellum. J. Autism Dev. Disorders. 31 (6): 2001; 529 – 535
dc.identifier.citedreferenceP. Gaspar, O. Cases, L. Maroteaux. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4 (12): 2003; 1002 – 1012, Review
dc.identifier.citedreferenceR.A. Galuske, W. Schlote, H. Bratzke, W. Singer. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science. 289: 2000; 1946 – 1949
dc.identifier.citedreferenceA. Gharib, C. Balende, N. Sarda, D. Weissmann, A. Plenevaux, A. Luxen, P. Bobillier, J.‐F. Pujol. Biochemical and autoradiographic measurements of brain serotonin synthesis rate in the freely moving rat: a reexaminations of the α‐methyl‐ l, ‐tryptophan method. J. Neurochem. 72: 1999; 2593 – 2600
dc.identifier.citedreferenceR. Haber, D. Bessette, B. Hulihan‐Giblin, M.J. Durcan, D. Goldman. Identification of tryptophan 2,3‐dioxygenase RNA in rodent brain. J. Neurochem. 60: 1993; 1159 – 1162
dc.identifier.citedreferenceM.R. Herbert, G.J. Harris, K.T. Adrien, D.A. Ziegler, N. Makris, D.N. Kennedy, N.T. Lange, C.F. Chabris, A. Bakardjiev, J. Hodgson, M. Takeoka, H. Tager‐Flusberg, V.S. Caviness. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 52: 2002; 589 – 596
dc.identifier.citedreferenceF. Hery, G. Chouvet, J.P. Kan, J.F. Pujol, J. Glowinski. Daily variations of various parameters of serotonin metabolism in the rat brain. II. Circadian variations in serum and cerebral tryptophan levels: lack of correlations with 5‐HT turnover. Brain Res. 123: 1977; 137 – 145
dc.identifier.citedreferenceY. Hoshino, T. Yamamoto, M. Kaneko, R. Tachibana, M. Watanabe, Y. Ono, H. Kumashiro. Blood serotonin and free tryptophan concentration in autistic children. Neuropsychobiology. 11 (1): 1984; 22 – 27
dc.identifier.citedreferenceJ.J. Hutsler. The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language‐associated regions of the temporal lobes. Brain Lang. 86: 2003; 226 – 242
dc.identifier.citedreferenceJ. Hutsler, R.A.W. Galuske. Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci. 26: 2003; 429 – 435
dc.identifier.citedreferenceS. Janusonis, V. Gluncic, P. Rakic. Early serotonergic projections to Cajal‐Retzius cells: Relevance for cortical development. J. Neurosci. 24: 2004; 1652 – 1659
dc.identifier.citedreferenceM.B. Jones, R.M. Palmour, L. Zwaigenbaum, P. Szatmari. Modifier effects in autism at the MAO‐A and DBH loci. Am. J. Med. Genet. 126B (1): 2004; 58 – 65
dc.identifier.citedreferenceD. Kahne, A. Tudorica, A. Borella, L. Shapiro, F. Johnstone, W. Huang, P.M. Whitaker‐Azmitia. Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism. Physiol. Behav. 75 (3): 2002; 403 – 410
dc.identifier.citedreferenceM. Leboyer, A. Philippe, M. Bouvard, M. Guilloud‐Bataille, D. Bondoux, F. Tabuteau, J. Feingold, M.C. Mouren‐Simeoni, J.M. Launay. Whole blood serotonin and plasma beta‐endorphin in autistic probands and their first‐degree relatives. Biol. Psychiatry. 45 (2): 1999; 158 – 163
dc.identifier.citedreferenceC. Lebrand, O. Cases, C. Adelbrecht, A. Doye, C. Alvarez, S.E. Mestikawy, I. Seif, P. Gaspar. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron. 17: 1996; 823 – 835
dc.identifier.citedreferenceB.L. Leventhal, E.H. Cook Jr., M. Morford, A. Ravitz, D.X. Freedman. Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disorders. 20 (4): 1990; 499 – 511
dc.identifier.citedreferenceC. Lord, M. Rutter, A. Le Couteur. Autism Diagnostic Interview‐Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disorders. 24 (5): 1994; 659 – 685
dc.identifier.citedreferenceH.S. Mayberg, R.G. Robinson, D.F. Wong, R. Parikh, P. Bolduc, S.E. Starkstein, T. Price, R.F. Dannals, J.M. Links, A.A. Wilson. PET imaging of cortical S2 serotonin receptors after stroke: lateralized changes and relationship to depression. Am. J. Psychiatry. 145 (8): 1988; 937 – 943
dc.identifier.citedreferenceK. Missala, TL Sourkes. Functional cerebral activity of an analogue of serotonin formed in situ. Neurochem. Int. 12: 1988; 209 – 214
dc.identifier.citedreferenceR.A. Muller, R.D. Rothermel, M.E. Behen, O. Muzik, P.K. Chakraborty, H.T. Chugani. Language organization in patients with early and late left‐hemisphere lesion: a PET study. Neuropsychologia. 37 (5): 1999; 545 – 557
dc.identifier.citedreferenceD.H. Munn, M. Zhou, J.T. Attwood, I. Bondarev, S.J. Conway, B. Marshall, C. Brown, A.L. Mellor. Inhibition of T cell proleiferation by macrophage tryptophan catabolism. Science. 281: 1998; 1191 – 1193
dc.identifier.citedreferenceO. Muzik, D.B. Behrendt, T.J. Mangner, H.T. Chugani. Design of a pediatric protocol for quantitative brain FDG studies with PET not requiring invasive blood sampling. J. Nucl. Med. 35: 1994; 104 (Abstract)
dc.identifier.citedreferenceO. Muzik, D.C. Chugani, P. Chakraborty, T. Mangner, H.T. Chugani. Analysis of [C‐11]alpha‐methyl‐tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J. Cereb. Blood Flow Met. 17 (6): 1997; 659 – 669
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.