Show simple item record

Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction

dc.contributor.authorWang, Xiao
dc.contributor.authorLi, Qiaoxia
dc.contributor.authorShi, Penghui
dc.contributor.authorFan, Jinchen
dc.contributor.authorMin, Yulin
dc.contributor.authorXu, Qunjie
dc.date.accessioned2020-01-13T15:10:20Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:10:20Z
dc.date.issued2019-11
dc.identifier.citationWang, Xiao; Li, Qiaoxia; Shi, Penghui; Fan, Jinchen; Min, Yulin; Xu, Qunjie (2019). "Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction." Small 15(48): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/152804
dc.description.abstractHydrogen is regarded as the most promising green clean energy in the 21st century. Developing the highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) is of great concern for the hydrogen industry. In the water electrolyzed reaction, the overpotential and the kinetics are the main hurdles for OER. Therefore, an efficient and durable oxygen evolution reaction electrocatalyst is required. In this study, an activated graphene (AG)–black phosphorus (BP) nanosheets hybrid is fabricated for supporting Ni3N particles (Ni3N/BP‐AG) in the application of OER. The Ni3N particles are combined with the BP‐AG heterostructure via facile mechanical ball milling under argon protection. The synthesized Ni3N/BP‐AG shows excellent catalytic performance toward the OER, demanding the overpotential of 233 mV for a current density of 10 mA cm−2 with a Tafel slope of 42 mV dec−1. The Ni3N/BP‐AG catalysts also show remarkable stability with a retention rate of the current density of about 86.4% after measuring for 10 000 s in potentiostatic mode.A black phosphorus (BP)–activated graphene (AG) heterostructure is designed for supporting nickel nitride (Ni3N) to enhance the performance of oxygen evolution reaction (OER). The Ni3N/BP‐AG exhibits excellent electrocatalytic performance toward OER with low overpotential and small Tafel slope. It also shows remarkable stability with a retention rate of ≈86.4% OER activity after 10 000 s.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygen evolution reaction
dc.subject.othernickel nitride
dc.subject.otherheterostructures
dc.subject.otherblack phosphorus
dc.subject.othergraphene
dc.titleNickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/1/smll201901530.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/2/smll201901530_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/3/smll201901530-sup-0001-S1.pdf
dc.identifier.doi10.1002/smll.201901530
dc.identifier.sourceSmall
dc.identifier.citedreferenceK. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, J. Am. Chem. Soc. 2015, 137, 4119.
dc.identifier.citedreferenceD. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu, Y. Li, ACS Catal. 2018, 8, 7879.
dc.identifier.citedreferenceY. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Small 2017, 13, 1700099.
dc.identifier.citedreferenceL. L. Feng, G. D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y. C. Zou, D. Wang, X. Zou, ACS Appl. Mater. Interfaces 2015, 7, 980.
dc.identifier.citedreferenceJ. Su, G.‐D. Li, X.‐H. Li, J.‐S. Chen, Adv. Sci. 2019, 6, 1801702.
dc.identifier.citedreferenceX. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, H. Zhang, Adv. Energy Mater. 2017, 7, 1700396.
dc.identifier.citedreferenceJ. Wang, D. Liu, H. Huang, N. Yang, B. Yu, M. Wen, X. Wang, P. K. Chu, X. F. Yu, Angew. Chem., Int. Ed. 2018, 57, 2600.
dc.identifier.citedreferenceR. J. Wu, M. Topsakal, T. Low, M. C. Robbins, N. Haratipour, J. S. Jeong, R. M. Wentzcovitch, S. J. Koester, K. A. Mkhoyan, J. Vac. Sci. Technol., A 2015, 33, 060604.
dc.identifier.citedreferenceL. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.
dc.identifier.citedreferenceR. Gusmão, Z. Sofer, M. Pumera, Angew. Chem., Int. Ed. 2017, 56, 8052.
dc.identifier.citedreferenceH. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732.
dc.identifier.citedreferenceZ. Shen, S. Sun, W. Wang, J. Liu, Z. Liu, J. C. Yu, J. Mater. Chem. A 2015, 3, 3285.
dc.identifier.citedreferenceM. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, J. Am. Chem. Soc. 2017, 139, 13234.
dc.identifier.citedreferenceQ. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Angew. Chem., Int. Ed. 2016, 55, 13849.
dc.identifier.citedreferenceD. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, J. Ding, J. Mater. Chem. A 2016, 4, 17363.
dc.identifier.citedreferenceT. Liu, M. Li, C. Jiao, M. Hassan, X. Bo, M. Zhou, H.‐L. Wang, J. Mater. Chem. A 2017, 5, 9377.
dc.identifier.citedreferenceS. Nandi, S. K. Singh, D. Mullangi, R. Illathvalappil, L. George, C. P. Vinod, S. Kurungot, R. Vaidhyanathan, Adv. Energy Mater. 2016, 6, 1601189.
dc.identifier.citedreferenceL. Han, K. Feng, Z. Chen, Energy Technol. 2017, 5, 1908.
dc.identifier.citedreferenceT. Wu, Y. Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, Y. Min, ACS Appl. Mater. Interfaces 2019, 11, 5136.
dc.identifier.citedreferenceY. Sun, T. Zhang, X. Li, Y. Bai, X. Lyu, G. Liu, W. Cai, Y. Li, Adv. Mater. Interfaces 2018, 5, 1800473.
dc.identifier.citedreferenceT. Wu, J. Fan, Q. Li, P. Shi, Q. Xu, Y. Min, Adv. Energy Mater. 2018, 8, 1701799.
dc.identifier.citedreferenceG. Abellan, S. Wild, V. Lloret, N. Scheuschner, R. Gillen, U. Mundloch, J. Maultzsch, M. Varela, F. Hauke, A. Hirsch, J. Am. Chem. Soc. 2017, 139, 10432.
dc.identifier.citedreferenceF. Shi, Z. Geng, K. Huang, Q. Liang, Y. Zhang, Y. Sun, J. Cao, S. Feng, Adv. Sci. 2018, 5, 1800575.
dc.identifier.citedreferenceA. C. Crowther, A. Ghassaei, N. Jung, L. E. Brus, ACS Nano 2012, 6, 1865.
dc.identifier.citedreferenceY. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 2610.
dc.identifier.citedreferenceN. Wang, L. Li, D. Zhao, X. Kang, Z. Tang, S. Chen, Small 2017, 13, 1701025.
dc.identifier.citedreferenceY. Shi, Y. Yu, Y. Liang, Y. Du, B. Zhang, Angew. Chem., Int. Ed. 2019, 58, 3769.
dc.identifier.citedreferenceM. B. Stevens, L. J. Enman, A. S. Batchellor, M. R. Cosby, A. E. Vise, C. D. M. Trang, S. W. Boettcher, Chem. Mater. 2017, 29, 120.
dc.identifier.citedreferenceA. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang, H. Fu, Nano Energy 2018, 44, 353.
dc.identifier.citedreferenceJ. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M. G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, V. Pellegrini, B. Scrosati, Nano Lett. 2014, 14, 4901.
dc.identifier.citedreferenceM. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Angew. Chem., Int. Ed. 2018, 57, 2160.
dc.identifier.citedreferenceL.‐A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347.
dc.identifier.citedreferenceJ. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu, R. Lu, Y. Li, J. Xiong, Adv. Mater. 2018, 30, 1803367.
dc.identifier.citedreferenceX. Lu, L. Gu, J. Wang, J. Wu, P. Liao, G. Li, Adv. Mater. 2017, 29, 1604437.
dc.identifier.citedreferenceX. Bai, Q. Wang, G. Xu, Y. Ning, K. Huang, F. He, Z. J. Wu, J. Zhang, Chem. ‐ Eur. J. 2017, 23, 16862.
dc.identifier.citedreferenceZ. Zhang, D. Zhou, J. Liao, X. Bao, H. Yu, Int. J. Energy Res. 2019, 43, 1460.
dc.identifier.citedreferenceZ. Xie, H. Tang, Y. Wang, ChemElectroChem 2019, 6, 1206.
dc.identifier.citedreferenceY. Gong, Z. Xu, H. Pan, ChemistrySelect 2019, 4, 1131.
dc.identifier.citedreferenceJ. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 2014, 10, 3480.
dc.identifier.citedreferenceM. Wang, M. Lin, J. Li, L. Huang, Z. Zhuang, C. Lin, L. Zhou, L. Mai, Chem. Commun. 2017, 53, 8372.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.