Show simple item record

Environmental filtering structures fungal endophyte communities in tree bark

dc.contributor.authorPellitier, Peter T.
dc.contributor.authorZak, Donald R.
dc.contributor.authorSalley, Sydney O.
dc.date.accessioned2020-01-13T15:10:26Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:10:26Z
dc.date.issued2019-12
dc.identifier.citationPellitier, Peter T.; Zak, Donald R.; Salley, Sydney O. (2019). "Environmental filtering structures fungal endophyte communities in tree bark." Molecular Ecology 28(23): 5188-5198.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/152808
dc.description.abstractThe factors that control the assembly and composition of endophyte communities across plant hosts remains poorly understood. This is especially true for endophyte communities inhabiting inner tree bark, one of the least studied components of the plant microbiome. Here, we test the hypothesis that bark of different tree species acts as an environmental filter structuring endophyte communities, as well as the alternative hypothesis, that bark acts as a passive reservoir that accumulates a diverse assemblage of spores and latent fungal life stages. We develop a means of extracting high‐quality DNA from surface sterilized tree bark to compile the first culture‐independent study of inner bark fungal communities. We sampled a total of 120 trees, spanning five dominant overstorey species across multiple sites in a mixed temperate hardwood forest. We find that each of the five tree species harbour unique assemblages of inner bark fungi and that angiosperm and gymnosperm hosts harbour significantly different fungal communities. Chemical components of tree bark (pH, total phenolic content) structure some of the differences detected among fungal communities residing in particular tree species. Inner bark fungal communities were highly diverse (mean of 117–171 operational taxonomic units per tree) and dominated by a range of Ascomycete fungi living asymptomatically as putative endophytes. Together, our evidence supports the hypothesis that tree bark acts as an environmental filter structuring inner bark fungal communities. The role of these potentially ubiquitous and plant‐specific fungal communities remains uncertain and merits further study.
dc.publisherJohn Wiley & Sons
dc.subject.otherplant–fungal interactions
dc.subject.othertree bark
dc.subject.otherendophytes
dc.subject.otherenvironmental filtering
dc.subject.othermicrobial diversity
dc.titleEnvironmental filtering structures fungal endophyte communities in tree bark
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152808/1/mec15237_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152808/2/mec15237.pdf
dc.identifier.doi10.1111/mec.15237
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceSelosse, M. A., Schneider‐Maunoury, L., & Martos, F. ( 2018 ). Time to re‐think fungal ecology? Fungal ecological niches are often prejudged. New Phytologist, 217 ( 3 ), 968 – 972. https://doi.org/10.1111/nph.14983
dc.identifier.citedreferenceRodriguez, R. J., White, J. F. Jr, Arnold, A. E., & Redman, R. S. ( 2009 ). Fungal endophytes: Diversity and functional roles. New Phytologist, 182 ( 2 ), 314 – 330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
dc.identifier.citedreferenceSakalidis, M. L., Hardy, G. E. S., & Burgess, T. I. ( 2011 ). Endophytes as potential pathogens of the baobab species Adansonia gregorii: A focus on the Botryosphaeriaceae. Fungal Ecology, 4 ( 1 ), 1 – 14. https://doi.org/10.1016/j.funeco.2010.06.001
dc.identifier.citedreferenceSchulz, B., & Boyle, C. ( 2005 ). The endophytic continuum. Mycological Research, 109 ( 6 ), 661 – 686. https://doi.org/10.1017/S095375620500273X
dc.identifier.citedreferenceSolheim, H., Torp, T. B., & Hietala, A. M. ( 2013 ). Characterization of the ascomycetes Therrya fuckelii and T. pini fruiting on Scots pine branches in Nordic countries. Mycological Progress, 12 ( 1 ), 37 – 44. https://doi.org/10.1007/s11557-012-0813-2
dc.identifier.citedreferenceSrivastava, L. M. ( 1964 ). Anatomy, chemistry, and physiology of bark. In J. A. Romberger & P. Mikola (Eds.), International review of forestry research (vol. 1; pp. 203 – 277 ). Amsterdam, the Netherlands: Elsevier.
dc.identifier.citedreferenceStierle, A., Strobel, G., & Stierle, D. ( 1993 ). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260 ( 5105 ), 214 – 216. https://doi.org/10.1126/science.8097061
dc.identifier.citedreferenceStrobel, G., & Daisy, B. ( 2003 ). Bioprospecting for microbial endophytes and their natural products. Microbiology Molecular Biology Review, 67 ( 4 ), 491 – 502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
dc.identifier.citedreferenceSwart, H. J. ( 1973 ). The fungus causing Cypress canker. Transactions of the British Mycological Society, 61 ( 1 ), 71 – 82. https://doi.org/10.1016/S0007-1536(73)80089-0
dc.identifier.citedreferenceTaylor, D. L., Walters, W. A., Lennon, N. J., Bochicchio, J., Krohn, A., Caporaso, J. G., & Pennanen, T. ( 2016 ). Accurate estimation of fungal diversity and abundance through improved lineage‐specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology, 82 ( 24 ), 7217 – 7226. https://doi.org/10.1128/AEM.02576-16
dc.identifier.citedreferenceTedersoo, L., Pärtel, K., Jairus, T., Gates, G., Põldmaa, K., & Tamm, H. ( 2009 ). Ascomycetes associated with ectomycorrhizas: Molecular diversity and ecology with particular reference to the Helotiales. Environmental Microbiology, 11 ( 12 ), 3166 – 3178.
dc.identifier.citedreferenceTeixeira, M. M., Moreno, L. F., Stielow, B. J., Muszewska, A., Hainaut, M., Gonzaga, L., … de Hoog, G. S. ( 2017 ). Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Studies in Mycology, 86, 1 – 28. https://doi.org/10.1016/j.simyco.2017.01.001
dc.identifier.citedreferenceU’Ren, J. M., & Arnold, A. E. ( 2016 ). Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ, 4, e2768. https://doi.org/10.7717/peerj.2768
dc.identifier.citedreferenceVandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. ( 2015 ). The importance of the microbiome of the plant holobiont. New Phytologist, 206 ( 4 ), 1196 – 1206. https://doi.org/10.1111/nph.13312
dc.identifier.citedreferenceVerma, V. C., Gond, S. K., Kumar, A., Kharwar, R. N., & Strobel, G. ( 2007 ). The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microbial Ecology, 54 ( 1 ), 119 – 125. https://doi.org/10.1007/s00248-006-9179-9
dc.identifier.citedreferenceWang, Y. I., Naumann, U., Wright, S. T., & Warton, D. I. ( 2012 ). mvabund–an R package for model‐based analysis of multivariate abundance data. Methods in Ecology and Evolution, 3 ( 3 ), 471 – 474.
dc.identifier.citedreferenceWarton, D. I., Foster, S. D., De’ath, G., Stoklosa, J., & Dunstan, P. K. ( 2015 ). Model‐based thinking for community ecology. Plant Ecology, 216 ( 5 ), 669 – 682. https://doi.org/10.1007/s11258-014-0366-3
dc.identifier.citedreferenceWebber, J. F. ( 1981 ). A natural biological control of Dutch elm disease. Nature, 292 ( 5822 ), 449 – 451. https://doi.org/10.1038/292449a0
dc.identifier.citedreferenceWebber, J. F., & Hedger, J. N. ( 1986 ). Comparison of interactions between Ceratocystis ulmi and elm bark saprobes in vitro and in vivo. Transactions of the British Mycological Society, 86 ( 1 ), 93 – 101. https://doi.org/10.1016/S0007-1536(86)80120-6
dc.identifier.citedreferenceYounginger, B. S., & Ballhorn, D. J. ( 2017 ). Fungal endophyte communities in the temperate fern Polystichum munitum show early colonization and extensive temporal turnover. American Journal of Botany, 104 ( 8 ), 1188 – 1194.
dc.identifier.citedreferenceZak, D. R., Host, G. E., & Pregitzer, K. S. ( 1989 ). Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 19 ( 12 ), 1521 – 1526. https://doi.org/10.1139/x89-231
dc.identifier.citedreferenceZhou, X., Zhu, H., Liu, L., Lin, J., & Tang, K. ( 2010 ). A review: Recent advances and future prospects of taxol‐producing endophytic fungi. Applied Microbiology and Biotechnology, 86 ( 6 ), 1707 – 1717. https://doi.org/10.1007/s00253-010-2546-y
dc.identifier.citedreferenceZimmerman, N. B., & Vitousek, P. M. ( 2012 ). Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proceedings of the National Academy of Sciences, 109 ( 32 ), 13022 – 13027. https://doi.org/10.1073/pnas.1209872109
dc.identifier.citedreferenceAinsworth, E. A., & Gillespie, K. M. ( 2007 ). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin‐Ciocalteu reagent. Nature Protocols, 2 ( 4 ), 875 – 877. https://doi.org/10.1038/nprot.2007.102
dc.identifier.citedreferenceAlfredsen, G., Solheim, H., & Slimestad, R. ( 2008 ). Antifungal effect of bark extracts from some European tree species. European Journal of Forest Research, 127 ( 5 ), 387 – 393. https://doi.org/10.1007/s10342-008-0222-x
dc.identifier.citedreferenceAllen, T. R., Millar, T., Berch, S. M., & Berbee, M. L. ( 2003 ). Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist, 160 ( 1 ), 255 – 272. https://doi.org/10.1046/j.1469-8137.2003.00885.x
dc.identifier.citedreferenceArnold, A. E. ( 2007 ). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21 ( 2–3 ), 51 – 66. https://doi.org/10.1016/j.fbr.2007.05.003
dc.identifier.citedreferenceArnold, A. E., Maynard, Z., & Gilbert, G. S. ( 2001 ). Fungal endophytes in dicotyledonous neotropical trees: Patterns of abundance and diversity. Mycological Research, 105 ( 12 ), 1502 – 1507. https://doi.org/10.1017/S0953756201004956
dc.identifier.citedreferenceArnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. ( 2000 ). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3 ( 4 ), 267 – 274. https://doi.org/10.1046/j.1461-0248.2000.00159.x
dc.identifier.citedreferenceArnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. ( 2003 ). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100 ( 26 ), 15649 – 15654. https://doi.org/10.1073/pnas.2533483100
dc.identifier.citedreferenceBálint, M., Bartha, L., O’Hara, R. B., Olson, M. S., Otte, J., Pfenninger, M., … Schmitt, I. ( 2015 ). Relocation, high‐latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 24 ( 1 ), 235 – 248. https://doi.org/10.1111/mec.13018
dc.identifier.citedreferenceBentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., … Seybold, S. J. ( 2010 ). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60 ( 8 ), 602 – 613. https://doi.org/10.1525/bio.2010.60.8.6
dc.identifier.citedreferenceBruns, T. D., Peay, K. G., Boynton, P. J., Grubisha, L. C., Hynson, N. A., Nguyen, N. H., & Rosenstock, N. P. ( 2009 ). Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99‐yr spore burial experiment. New Phytologist, 181 ( 2 ), 463 – 470.
dc.identifier.citedreferenceCarroll, G. ( 1988 ). Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69 ( 1 ), 2 – 9. https://doi.org/10.2307/1943154
dc.identifier.citedreferenceChen, K. H., Miadlikowska, J., Molnár, K., Arnold, A. E., U’Ren, J. M., Gaya, E., … Lutzoni, F. ( 2015 ). Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order–Phaeomoniellales. Molecular Phylogenetics and Evolution, 85, 117 – 130. https://doi.org/10.1016/j.ympev.2015.01.008
dc.identifier.citedreferenceChristian, N., Herre, E. A., & Clay, K. ( 2019 ). Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytologist, 222 ( 3 ), 1573 – 1583.
dc.identifier.citedreferenceCline, L. C., Schilling, J. S., Menke, J., Groenhof, E., & Kennedy, P. G. ( 2018 ). Ecological and functional effects of fungal endophytes on wood decomposition. Functional Ecology, 32 ( 1 ), 181 – 191.
dc.identifier.citedreferenceColeman‐Derr, D., Desgarennes, D., Fonseca‐Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., … Tringe, S. G. ( 2016 ). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209 ( 2 ), 798 – 811.
dc.identifier.citedreferenceCollado, J., Platas, G., & Pelaez, F. ( 2001 ). Identification of an endophytic Nodulisporium sp. from Quercus ilex in central Spain as the anamorph of Biscogniauxia mediterranea by rDNA sequence analysis and effect of different ecological factors on distribution of the fungus. Mycologia, 93, 875 – 886.
dc.identifier.citedreferenceCuellar-Gempeler, C., & Leibold, M. A. ( 2019 ). Key colonist pools and habitat filters mediate the composition of fiddler crab–associated bacterial communities. Ecology, 100 ( 4 ), e02628.
dc.identifier.citedreferenceDavis, E. C., Franklin, J. B., Shaw, A. J., & Vilgalys, R. ( 2003 ). Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. American Journal of Botany, 90 ( 11 ), 1661 – 1667.
dc.identifier.citedreferenceDesjardin, D. E., Capelari, M., & Stevani, C. ( 2007 ). Bioluminescent Mycena species from São Paulo, Brazil. Mycologia, 99 ( 2 ), 317 – 331.
dc.identifier.citedreferenceDickie, I. A. ( 2010 ). Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist, 188 ( 4 ), 916 – 918. https://doi.org/10.1111/j.1469-8137.2010.03473.x
dc.identifier.citedreferenceEdgar, R. C. ( 2013 ). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10 ( 10 ), 996 – 998. https://doi.org/10.1038/nmeth.2604
dc.identifier.citedreferenceEvert, R. F. ( 2006 ). Esau’s plant anatomy: Meristems, cells, and tissues of the plant body: their structure, function, and development. Chichester, UK: John Wiley & Sons.
dc.identifier.citedreferenceFukami, T. ( 2015 ). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1 – 23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
dc.identifier.citedreferenceFunk, A. ( 1980 ). New Therrya species parasitic on western conifers. Canadian Journal of Botany, 58 ( 11 ), 1291 – 1294.
dc.identifier.citedreferenceGlynou, K., Thines, M., & Maciá‐Vicente, J. G. ( 2018 ). Host species identity in annual Brassicaceae has a limited effect on the assembly of root‐endophytic fungal communities. Plant Ecology & Diversity., 11, 1 – 12. https://doi.org/10.1080/17550874.2018.1504332
dc.identifier.citedreferenceGriffith, G. S., & Boddy, L. ( 1990 ). Fungal decomposition of attached angiosperm twigs I. Decay community development in ash, beech and oak. New Phytologist, 116 ( 3 ), 407 – 415. https://doi.org/10.1111/j.1469-8137.1990.tb00526.x
dc.identifier.citedreferenceHardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., … Sessitsch, A. ( 2015 ). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology Molecular Biology Review, 79 ( 3 ), 293 – 320. https://doi.org/10.1128/MMBR.00050-14
dc.identifier.citedreferenceHeilmann‐Clausen, J., & Boddy, L. ( 2005 ). Inhibition and stimulation effects in communities of wood decay fungi: Exudates from colonized wood influence growth by other species. Microbial Ecology, 49 ( 3 ), 399 – 406. https://doi.org/10.1007/s00248-004-0240-2
dc.identifier.citedreferenceHerms, D. A., & McCullough, D. G. ( 2014 ). Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annual Review of Entomology, 59, 13 – 30. https://doi.org/10.1146/annurev-ento-011613-162051
dc.identifier.citedreferenceHiggins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. ( 2007 ). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42 ( 2 ), 543 – 555.
dc.identifier.citedreferenceHoffman, M. T., & Arnold, A. E. ( 2008 ). Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycological Research, 112 ( 3 ), 331 – 344. https://doi.org/10.1016/j.mycres.2007.10.014
dc.identifier.citedreferenceJumpponen, A., Herrera, J., Porras‐Alfaro, A., & Rudgers, J. ( 2017 ). Biogeography of root‐associated fungal endophytes. In L. Tedersoo (Ed.), Biogeography of mycorrhizal symbiosis (pp. 195 – 222 ). Berlin, Germany: Springer.
dc.identifier.citedreferenceKernaghan, G., & Patriquin, G. ( 2011 ). Host associations between fungal root endophytes and boreal trees. Microbial Ecology, 62 ( 2 ), 460 – 473. https://doi.org/10.1007/s00248-011-9851-6
dc.identifier.citedreferenceKõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., … Larsson, K.‐H. ( 2013 ). Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology, 22 ( 21 ), 5271 – 5277. https://doi.org/10.1111/mec.12481
dc.identifier.citedreferenceKowalski, T., & Kehr, R. D. ( 1992 ). Endophytic fungal colonization of branch bases in several forest tree species. Sydowia, 44 ( 2 ), 137 – 168.
dc.identifier.citedreferenceKraft, N. J., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. ( 2015 ). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29 ( 5 ), 592 – 599. https://doi.org/10.1111/1365-2435.12345
dc.identifier.citedreferenceKusari, S., Hertweck, C., & Spiteller, M. ( 2012 ). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology, 19 ( 7 ), 792 – 798. https://doi.org/10.1016/j.chembiol.2012.06.004
dc.identifier.citedreferenceLana, T. G., Azevedo, J. L., Pomella, A. W., Monteiro, R. T., Silva, C. B., & Araújo, W. L. ( 2011 ). Endophytic and pathogenic isolates of the cacao fungal pathogen Moniliophthora perniciosa (Tricholomataceae) are indistinguishable based on genetic and physiological analysis. Genetics and Molecular Research, 10 ( 1 ), 326 – 334. https://doi.org/10.4238/vol10-1gmr895
dc.identifier.citedreferenceLangrell, S. R. ( 2005 ). Development of a nested PCR detection procedure for Nectria fuckeliana direct from Norway spruce bark extracts. FEMS Microbiology Letters, 242 ( 1 ), 185 – 193.
dc.identifier.citedreferenceLegendre, P., & Gallagher, E. D. ( 2001 ). Ecologically meaningful transformations for ordination of species data. Oecologia, 129 ( 2 ), 271 – 280. https://doi.org/10.1007/s004420100716
dc.identifier.citedreferenceLegendre, P., & Legendre, L. F. ( 2012 ). Numerical ecology (vol. 24 ). Amsterdam, the Netherlands: Elsevier.
dc.identifier.citedreferenceLofgren, L. A., LeBlanc, N. R., Certano, A. K., Nachtigall, J., LaBine, K. M., Riddle, J., … Kistler, H. C. ( 2018 ). Fusarium graminearum: Pathogen or endophyte of North American grasses? New Phytologist, 217 ( 3 ), 1203 – 1212.
dc.identifier.citedreferenceLücking, R., Hodkinson, B. P., & Leavitt, S. D. ( 2017 ). The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera. The Bryologist, 119 ( 4 ), 361 – 417.
dc.identifier.citedreferenceMcDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, J., Wendel, D., … Caporaso, J. G. ( 2012 ). The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome‐ome. GigaScience, 1 ( 1 ), 7. https://doi.org/10.1186/2047-217X-1-7
dc.identifier.citedreferenceMinter, D. W. ( 1996 ). Therrya fuckelii. Mycopathologia, 136 ( 3 ), 171 – 173.
dc.identifier.citedreferenceNguyen, N. H., Smith, D., Peay, K., & Kennedy, P. ( 2015 ). Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 205 ( 4 ), 1389 – 1393. https://doi.org/10.1111/nph.12923
dc.identifier.citedreferenceObase, K., & Matsuda, Y. ( 2014 ). Culturable fungal endophytes in roots of Enkianthus campanulatus (Ericaceae). Mycorrhiza, 24 ( 8 ), 635 – 644. https://doi.org/10.1007/s00572-014-0584-5
dc.identifier.citedreferenceOksanen, J., Blanchet, F., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G., Solymos, P., … Wagner, H. ( 2011 ). Multivariate analysis of ecological communities. Vegan Tutorial, 1 – 40.
dc.identifier.citedreferencePaliy, O., & Shankar, V. ( 2016 ). Application of multivariate statistical techniques in microbial ecology. Molecular Ecology, 25 ( 5 ), 1032 – 1057. https://doi.org/10.1111/mec.13536
dc.identifier.citedreferencePetrini, O., & Fisher, P. J. ( 1990 ). Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycological Research, 94 ( 8 ), 1077 – 1080.
dc.identifier.citedreferencePorras‐Alfaro, A., & Bayman, P. ( 2011 ). Hidden fungi, emergent properties: Endophytes and microbiomes. Annual Review of Phytopathology, 49, 291 – 315. https://doi.org/10.1146/annurev-phyto-080508-081831
dc.identifier.citedreferenceR Core Team ( 2019 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.