Show simple item record

Metalâ Chelated Polymer Nanodiscs for NMR Studies

dc.contributor.authorHardin, Nathaniel Z.
dc.contributor.authorKocman, Vojč
dc.contributor.authorDi Mauro, Giacomo M.
dc.contributor.authorRavula, Thirupathi
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2020-01-13T15:10:30Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:10:30Z
dc.date.issued2019-11-25
dc.identifier.citationHardin, Nathaniel Z.; Kocman, Vojč ; Di Mauro, Giacomo M.; Ravula, Thirupathi; Ramamoorthy, Ayyalusamy (2019). "Metalâ Chelated Polymer Nanodiscs for NMR Studies." Angewandte Chemie 131(48): 17406-17410.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/152811
dc.description.abstractParamagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T1) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styreneâ coâ maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions. Cu2+â chelated nanodiscs are demonstrated to reduce the T1 of protons for both polymer and lipidâ nanodisc components. The chelated nanodiscs also decrease the proton T1 values for a waterâ soluble DNA Gâ quadruplex. These results suggest that polymer nanodiscs functionalized with paramagnetic tags can be used to speedâ up data acquisition from lipid bilayer samples and also to provide structural information from waterâ soluble biomolecules.Datenerfassung mit Tempo: Eine speziell entworfene Polymernanoscheibe mit einem DOTAâ Chelatbildner ermöglicht es, den PREâ Effekt in Studien mit Lipidâ Nanoscheiben auszunutzen. Diese neue Technik kann auf wasserlösliche Biomoleküle wie Gâ Quadruplexe angewendet werden.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPolymernanoscheiben
dc.subject.otherMetallchelatisierung
dc.subject.otherNMR-Spektroskopie
dc.subject.otherParamagnetische Relaxationsverstärkung (PRE)
dc.subject.otherT1-Verstärkung
dc.titleMetalâ Chelated Polymer Nanodiscs for NMR Studies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152811/1/ange201910118.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152811/2/ange201910118-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152811/3/ange201910118_am.pdf
dc.identifier.doi10.1002/ange.201910118
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceK. Yamamoto, J. Xu, K. E. Kawulka, J. C. Vederas, A. Ramamoorthy, J. Am. Chem. Soc. 2010, 132, 6929 â 6931.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, J. Bai, S. C. Im, L. Waskell, A. Ramamoorthy, Chem. Commun. 2018, 54, 9615 â 9618.
dc.identifier.citedreferenceS. Lindhoud, V. Carvalho, J. W. Pronk, M. E. Aubin-Tam, Biomacromolecules 2016, 17, 1516 â 1522.
dc.identifier.citedreferenceD. J. K. Swainsbury, S. Scheidelaar, N. Foster, R. van Grondelle, J. A. Killian, M. R. Jones, Biochim. Biophys. Acta. 2017, 1859, 2133 â 2143.
dc.identifier.citedreferenceA. Oluwole, B. Danielczak, A. Meister, J. Babalola, C. Vargas, S. Keller, Angew. Chem. Int. Ed. 2017, 56, 1919 â 1924; Angew. Chem. 2017, 129, 1946 â 1951.
dc.identifier.citedreferenceT. Ravula, S. K. Ramadugu, G. Di Mauro, A. Ramamoorthy, Angew. Chem. Int. Ed. 2017, 56, 11466 â 11470; Angew. Chem. 2017, 129, 11624 â 11628; Corrigendum: T. Ravula, S. K. Ramadugu, G. Di Mauro, A. Ramamoorthy, Angew. Chem. Int. Ed. 2019, 58, 13184 â 13184; Angew. Chem. 2019, 131, 13318 â 13318.
dc.identifier.citedreferenceJ. M. Dörr, M. C. Koorengevel, M. Schäfer, A. V. Prokofyev, S. Scheidelaar, E. A. W. van der Cruijsen, T. R. Dafforn, M. Baldus, J. A. Killian, Proc. Natl. Acad. Sci. USA 2014, 111, 18607 â 18612.
dc.identifier.citedreferenceM. Overduin, M. Esmaili, Appl. Sci. 2019, 9, 1230.
dc.identifier.citedreferenceJ. F. Bada Juarez, D. O’Rourke, P. J. Judge, L. C. Liu, J. Hodgkin, A. Watts, Chem. Phys. Lipids 2019, 222, 51 â 58.
dc.identifier.citedreferenceT. Ravula, A. Ramamoorthy, Angew. Chem. Int. Ed. 2019, 58, 14925 â 14928; Angew. Chem. 2019, 131, 15067 â 15070.
dc.identifier.citedreferenceR. Puthenveetil, K. Nguyen, O. Vinogradova, Nanotechnol. Rev. 2017, 6, 111 â 126.
dc.identifier.citedreferenceS. Cai, C. Seu, Z. Kovacs, A. D. Sherry, Y. Chen, J. Am. Chem. Soc. 2006, 128, 13474 â 13478.
dc.identifier.citedreferenceG. Esposito, A. M. Lesk, H. Molinari, A. Motta, N. Niccolai, A. Pastore, J. Mol. Biol. 1992, 224, 659 â 670.
dc.identifier.citedreferenceK. Yamamoto, S. Vivekanandan, A. Ramamoorthy, J. Phys. Chem. B 2011, 115, 12448 â 12455.
dc.identifier.citedreferenceV. Kocman, G. M. Di Mauro, G. Veglia, A. Ramamoorthy, Solid State Nucl. Magn. Reson. 2019, 102, 36 â 46.
dc.identifier.citedreferenceI. Sengupta, M. Gao, R. J. Arachchige, P. S. Nadaud, T. F. Cunningham, S. Saxena, C. D. Schwieters, C. P. Jaroniec, J. Biomol. NMR 2015, 61, 1 â 6.
dc.identifier.citedreferenceG. M. Clore, Methods Enzymol. 2015, 564, 485 â 497.
dc.identifier.citedreferenceE. S. Salnikov, F. Aussenac, S. Abel, A. Purea, P. Tordo, O. Ouari, B. Bechinger, Solid State Nucl. Magn. Reson. 2019, 100, 70 â 76.
dc.identifier.citedreferenceQ. Z. Ni, E. Daviso, T. V. Can, E. Markhasin, S. K. Jawla, T. M. Swager, R. J. Temkin, J. Herzfeld, R. G. Griffin, Acc. Chem. Res. 2013, 46, 1933 â 1941.
dc.identifier.citedreferenceS. V. Dvinskikh, V. Castro, D. Sandström, Phys. Chem. Chem. Phys. 2005, 7, 607 â 613.
dc.identifier.citedreferenceM. M. Hoffmann, H. S. Sobstyl, S. J. Seedhouse, Magn. Reson. Chem. 2008, 46, 660 â 666.
dc.identifier.citedreferenceC. Lin, D. Yang, Methods Mol. Biol. 2017, 1587, 171 â 196.
dc.identifier.citedreferenceN. Niccolai, E. Morandi, S. Gardini, V. Costabile, R. Spadaccini, O. Crescenzi, D. Picone, O. Spiga, A. Bernini, Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 201 â 207.
dc.identifier.citedreferenceS. C. Keane, X. Heng, K. Lu, S. Kharytonchyk, V. Ramakrishnan, G. Carter, S. Barton, A. Hosic, A. Florwick, J. Santos, N. C. Bolden, S. McCowin, D. A. Case, B. A. Johnson, M. Salemi, A. Telesnitsky, M. F. Summers, Science 2015, 348, 917 â 921.
dc.identifier.citedreferenceP. Niedbalski, C. Parish, Q. Wang, Z. Hayati, L. Song, A. F. Martins, A. D. Sherry, L. Lumata, J. Phys. Chem. A 2017, 121, 9221 â 9228.
dc.identifier.citedreferenceE. Ravera, D. Shimon, A. Feintuch, D. Goldfarb, S. Vega, A. Flori, C. Luchinat, L. Menichetti, G. Parigi, Phys. Chem. Chem. Phys. 2015, 17, 26969 â 26978.
dc.identifier.citedreferenceJ. R. Yarava, S. R. Chaudhari, A. J. Rossini, A. Lesage, L. Emsley, J. Magn. Reson. 2017, 277, 149 â 153.
dc.identifier.citedreferenceR. Rogawski, A. E. McDermott, Arch. Biochem. Biophys. 2017, 628, 102 â 113.
dc.identifier.citedreferenceC. Hartlmüller, J. C. Günther, A. C. Wolter, J. Wöhnert, M. Sattler, T. Madl, Sci. Rep. 2017, 7, 5393.
dc.identifier.citedreferenceC. Hartlmüller, E. Spreitzer, C. Göbl, F. Falsone, T. Madl, J. Biomol. NMR 2019, 73, 305 â 317.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Nat. Struct. Mol. Biol. 2016, 23, 481.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Chem. Rev. 2017, 117, 4669 â 4713.
dc.identifier.citedreferenceH. G. Hocking, K. Zangger, T. Madl, ChemPhysChem 2013, 14, 3082 â 3094.
dc.identifier.citedreferenceS. C. Lee, T. J. Knowles, V. L. Postis, M. Jamshad, R. A. Parslow, Y. P. Lin, A. Goldman, P. Sridhar, M. Overduin, S. P. Muench, T. R. Dafforn, Nat. Protoc. 2016, 11, 1149 â 1162.
dc.identifier.citedreferenceM. C. Orwick, P. J. Judge, J. Procek, L. Lindholm, A. Graziadei, A. Engel, G. Grobner, A. Watts, Angew. Chem. Int. Ed. 2012, 51, 4653 â 4657; Angew. Chem. 2012, 124, 4731 â 4735.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, S. K. Ramadugu, S. J. Cox, A. Ramamoorthy, Angew. Chem. Int. Ed. 2018, 57, 1342 â 1345; Angew. Chem. 2018, 130, 1356 â 1359; Corrigendum: T. Ravula, N. Z. Hardin, S. K. Ramadugu, S. J. Cox, A. Ramamoorthy, Angew. Chem. Int. Ed. 2019, 58, 13185 â 13185; Angew. Chem. 2019, 131, 13319 â 13319.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, G. M. Di Mauro, A. Ramamoorthy, Eur. Polym. J. 2018, 108, 597 â 602.
dc.identifier.citedreferenceJ. M. Dörr, S. Scheidelaar, M. C. Koorengevel, J. J. Dominguez, M. Schäfer, C. A. van Walree, J. A. Killian, Eur. Biophys. J. 2016, 45, 3 â 21.
dc.identifier.citedreferenceJ. Radoicic, S. H. Park, S. J. Opella, Biophys. J. 2018, 115, 22 â 25.
dc.identifier.citedreferenceA. F. Craig, E. E. Clark, I. D. Sahu, R. Zhang, N. D. Frantz, M. S. Al-Abdul-Wahid, C. Dabney-Smith, D. Konkolewicz, G. A. Lorigan, Biochim. Biophys. Acta. 2016, 1858, 2931 â 2939.
dc.identifier.citedreferenceF. Hagn, M. L. Nasr, G. Wagner, Nat. Protoc. 2018, 13, 79.
dc.identifier.citedreferenceM. C. Fiori, Y. Jiang, G. A. Altenberg, H. Liang, Sci. Rep. 2017, 7, 7432.
dc.identifier.citedreferenceS. C. L. Hall, C. Tognoloni, J. Charlton, E. C. Bragginton, A. J. Rothnie, P. Sridhar, M. Wheatley, T. J. Knowles, T. Arnold, K. J. Edler, T. R. Dafforn, Nanoscale 2018, 10, 10609 â 10619.
dc.identifier.citedreferenceZ. Stroud, S. C. L. Hall, T. R. Dafforn, Methods 2018, 147, 106 â 117.
dc.identifier.citedreferenceT. J. Knowles, R. Finka, C. Smith, Y. P. Lin, T. Dafforn, M. Overduin, J. Am. Chem. Soc. 2009, 131, 7484 â 7485.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.