Show simple item record

Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems

dc.contributor.authorBlesh, Jennifer
dc.date.accessioned2020-01-13T15:11:11Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:11:11Z
dc.date.issued2019-12
dc.identifier.citationBlesh, Jennifer (2019). "Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems." Ecological Applications 29(8): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/152835
dc.description.abstractNitrogen (N) losses from intensified agriculture are a major cause of global change, due to nitrate (NO3−) export and the eutrophication of aquatic systems as well as emissions of nitrous oxide (N2O) into the atmosphere. Diversified agroecosystems with legume cover crops couple N and carbon (C) inputs to soil and reduce N pollution, but there is a need to identify controls on legume N2 fixation across ecosystems with variable soil conditions. Here, I tested the hypothesis that N mineralization from turnover of soil organic matter (SOM) regulates legume N2 fixation across 10 farms that spanned a gradient of SOM levels. I separated soil samples into two SOM fractions, based on size and density, which are indicators of soil nutrient cycling and N availability (free particulate organic matter and intra‐aggregate particulate organic matter [POM]). This study indicates downregulation of legume N2 fixation in diversified agroecosystems with increasing N availability in intra‐aggregate POM and increasing N mineralization. Intercropping the legume with a grass weakened the relationship between N in POM and N2 fixation due to N assimilation by the grass. Further, mean rates of N and C mineralization across sites increased with two seasons of a legume‐grass cover crop mixture, which could enhance this stabilizing feedback between soil N availability and N2 fixation over time. These results suggest a potential mechanism for the diversity–ecosystem‐function relationships measured in long‐term studies of agroecosystems, in which regular use of legume cover crops increases total soil organic C and N and reduces negative environmental impacts of crop production.
dc.publisherWiley Periodicals, Inc.
dc.publisherSSSA Special Publication 49
dc.subject.otherparticulate organic matter
dc.subject.othersoil carbon
dc.subject.othersoil organic matter
dc.subject.otheragroecosystem
dc.subject.otherbiological nitrogen fixation
dc.subject.othercover crop
dc.subject.otherlegume
dc.subject.othermineralization
dc.titleFeedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152835/1/eap1986.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152835/2/eap1986-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152835/3/eap1986_am.pdf
dc.identifier.doi10.1002/eap.1986
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceSalvagiotti, F., K. G. Cassman, J. E. Specht, D. T. Walters, A. Weiss, and A. Dobermann. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research 108: 1 – 13.
dc.identifier.citedreferencePaterson, E. 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. European Journal of Soil Science 54: 741 – 750.
dc.identifier.citedreferencePeoples, M. B., P. M. Chalk, M. J. Unkovich, and R. M. Boddey. 2015. Can differences in 15N natural abundance be used to quantify the transfer of nitrogen from legumes to neighbouring non‐legume plant species? Soil Biology and Biochemistry 87: 97 – 109.
dc.identifier.citedreferencePoeplau, C., and A. Don. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta‐analysis. Agriculture, Ecosystems & Environment 200: 33 – 41.
dc.identifier.citedreferencePoffenbarger, H. J., S. B. Mirsky, R. R. Weil, J. E. Maul, M. Kramer, J. T. Spargo, and M. A. Cavigelli. 2015. Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions. Agronomy Journal 107: 2069 – 2082.
dc.identifier.citedreferencePuget, P., C. Chenu, and J. Balesdent. 2000. Dynamics of soil organic matter associated with particle‐size fractions of water‐stable aggregates. European Journal of Soil Science 51: 595 – 605.
dc.identifier.citedreferenceRoley, S. S., D. S. Duncan, D. Liang, A. Garoutte, R. D. Jackson, J. M. Tiedje, and G. P. Robertson. 2018. Associative nitrogen fixation (ANF) in switchgrass ( Panicum virgatum ) across a nitrogen input gradient. PLoS ONE 13: e0197320.
dc.identifier.citedreferenceSchipanski, M. E., and L. E. Drinkwater. 2011. Nitrogen fixation of red clover interseeded with winter cereals across a management‐induced fertility gradient. Nutrient Cycling in Agroecosystems 90: 105 – 119.
dc.identifier.citedreferenceSchipanski, M. E., L. E. Drinkwater, and M. P. Russelle. 2010. Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant and Soil 329: 379 – 397.
dc.identifier.citedreferenceSchmidt, M. W., et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49 – 56.
dc.identifier.citedreferenceShearer, G., and D. H. Kohl. 1986. N2‐fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology 13: 699 – 756.
dc.identifier.citedreferenceSmercina, D. N., S. E. Evans, M. L. Friesen, and L. K. Tiemann. 2019. To fix or not to fix: controls on free‐living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85: e02546‐02518.
dc.identifier.citedreferenceStorkey, J., T. Döring, J. Baddeley, R. Collins, S. Roderick, H. Jones, and C. Watson. 2015. Engineering a plant community to deliver multiple ecosystem services. Ecological Applications 25: 1034 – 1043.
dc.identifier.citedreferenceSyswerda, S. P., B. Basso, S. K. Hamilton, J. B. Tausig, and G. P. Robertson. 2012. Long‐term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agriculture, Ecosystems & Environment 149: 10 – 19.
dc.identifier.citedreferenceThies, J. E., P. W. Singleton, and B. B. Bohlool. 1991. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field‐grown legumes. Applied and Environmental Microbiology 57: 19 – 28.
dc.identifier.citedreferenceTiemann, L., A. Grandy, E. Atkinson, E. Marin‐Spiotta, and M. McDaniel. 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters 18: 761 – 771.
dc.identifier.citedreferenceTonitto, C., M. B. David, and L. E. Drinkwater. 2006. Replacing bare fallows with cover crops in fertilizer‐intensive cropping systems: a meta‐analysis of crop yield and N dynamics. Agriculture, Ecosystems and Environment 112: 58 – 72.
dc.identifier.citedreferenceVan Kessel, C., and C. Hartley. 2000. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Research 65: 165 – 181.
dc.identifier.citedreferenceVitousek, P. M., K. Cassman, C. Cleveland, T. Crews, C. B. Field, N. B. Grimm, R. W. Howarth, R. Marino, L. Martinelli, and E. B. Rastetter. 2002. Towards an ecological understanding of biological nitrogen fixation. Pages 1 – 45 in E. W. Boyer and R. W. Howarth, editors. The nitrogen cycle at regional to global scales: report of the International SCOPE Project. Springer Netherlands, Heidelberg, Germany.
dc.identifier.citedreferenceVitousek, P. M., D. N. Menge, S. C. Reed, and C. C. Cleveland. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B 368: 20130119.
dc.identifier.citedreferencevon Lützow, M., I. Kögel‐Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science 57: 426 – 445.
dc.identifier.citedreferenceWander, M. 2004. Soil organic matter fractions and their relevance to soil function. Pages 67–102 in F. Magdoff and R. R. Weil, editors. Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, Florida, USA.
dc.identifier.citedreferenceWander, M., S. Traina, B. Stinner, and S. Peters. 1994. Organic and conventional management effects on biologically active soil organic matter pools. Soil Science Society of America Journal 58: 1130 – 1139.
dc.identifier.citedreferenceWillson, T., E. Paul, and R. Harwood. 2001. Biologically active soil organic matter fractions in sustainable cropping systems. Applied Soil Ecology 16: 63 – 76.
dc.identifier.citedreferenceBasche, A. D., F. E. Miguez, T. C. Kaspar, and M. J. Castellano. 2014. Do cover crops increase or decrease nitrous oxide emissions? A meta‐analysis. Journal of Soil and Water Conservation 69: 471 – 482.
dc.identifier.citedreferenceBates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed‐effects models using lme4. Journal of Statistical Software 67 ( 1 ): 1 – 48.
dc.identifier.citedreferenceBerthrong, S. T., D. H. Buckley, and L. E. Drinkwater. 2013. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microbial Ecology 66: 158 – 170.
dc.identifier.citedreferenceBlesh, J. 2018. Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. Journal of Applied Ecology 55: 38 – 48.
dc.identifier.citedreferenceBlesh, J., and L. Drinkwater. 2013. The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin. Ecological Applications 23: 1017 – 1035.
dc.identifier.citedreferenceCambardella, C., and E. Elliott. 1992. Particulate soil organic‐matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56: 777 – 783.
dc.identifier.citedreferenceCech, P. G., P. J. Edwards, and H. Olde Venterink. 2010. Why is abundance of herbaceous legumes low in African savanna? A test with two model species. Biotropica 42: 580 – 589.
dc.identifier.citedreferenceCheng, W. 2009. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biology and Biochemistry 41: 1795 – 1801.
dc.identifier.citedreferenceClarholm, M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry 17: 181 – 187.
dc.identifier.citedreferenceCollins, H., E. Elliott, K. Paustian, L. Bundy, W. Dick, D. Huggins, A. Smucker, and E. Paul. 2000. Soil carbon pools and fluxes in long‐term corn belt agroecosystems. Soil Biology and Biochemistry 32: 157 – 168.
dc.identifier.citedreferenceCotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19: 988 – 995.
dc.identifier.citedreferenceDiaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926 – 929.
dc.identifier.citedreferenceDorodnikov, M., Y. Kuzyakov, A. Fangmeier, and G. L. Wiesenberg. 2011. C and N in soil organic matter density fractions under elevated atmospheric CO 2: turnover vs. stabilization. Soil Biology and Biochemistry 43: 579 – 589.
dc.identifier.citedreferenceDrinkwater, L. E., and S. S. Snapp. 2007. Nutrients in agroecosystems: rethinking the management paradigm. Advances in Agronomy 92: 163 – 186.
dc.identifier.citedreferenceDrinkwater, L. E., C. A. Cambardella, J. D. Reeder, and C. W. Rice. 1996. Potentially mineralizable nitrogen as an indicator of biologically active soil nitrogen. Pages 217 – 229 in J. W. Doran, and A. J. Jones, editors. Methods for assessing soil quality. SSSA Special Publication 49, Madison, Wisconsin, USA.
dc.identifier.citedreferenceDrinkwater, L. E., P. Wagoner, and M. Sarrantonio. 1998. Legume‐based cropping systems have reduced carbon and nitrogen losses. Nature 396: 262 – 265.
dc.identifier.citedreferenceFinney, D. M., and J. P. Kaye. 2017. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. Journal of Applied Ecology 54: 509 – 517.
dc.identifier.citedreferenceFisk, L., L. Barton, D. Jones, H. Glanville, and D. Murphy. 2015. Root exudate carbon mitigates nitrogen loss in a semi‐arid soil. Soil Biology and Biochemistry 88: 380 – 389.
dc.identifier.citedreferenceFornara, D. A., and D. Tilman. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology 96: 314 – 322.
dc.identifier.citedreferenceFranzluebbers, A., R. Haney, C. Honeycutt, H. Schomberg, and F. Hons. 2000. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal 64: 613 – 623.
dc.identifier.citedreferenceGalloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889 – 897.
dc.identifier.citedreferenceGelfand, I., and G. P. Robertson. 2015. A reassessment of the contribution of soybean biological nitrogen fixation to reactive N in the environment. Biogeochemistry 123: 175 – 184.
dc.identifier.citedreferenceGoss, M., A. de Varennes, P. Smith, and J. Ferguson. 2002. N2 fixation by soybeans grown with different levels of mineral nitrogen, and the fertilizer replacement value for a following crop. Canadian Journal of Soil Science 82: 139 – 145.
dc.identifier.citedreferenceGrandy, A. S., and G. P. Robertson. 2007. Land‐use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10: 59 – 74.
dc.identifier.citedreferenceHamilton, E. W., and D. A. Frank. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82: 2397 – 2402.
dc.identifier.citedreferenceHan, Z., M. T. Walter, and L. E. Drinkwater. 2017. N 2 O emissions from grain cropping systems: a meta‐analysis of the impacts of fertilizer‐based and ecologically‐based nutrient management strategies. Nutrient Cycling in Agroecosystems 107: 335 – 355.
dc.identifier.citedreferenceHatton, P.‐J., M. Kleber, B. Zeller, C. Moni, A. F. Plante, K. Townsend, L. Gelhaye, K. Lajtha, and D. Derrien. 2012. Transfer of litter‐derived N to soil mineral–organic associations: evidence from decadal 15N tracer experiments. Organic Geochemistry 42: 1489 – 1501.
dc.identifier.citedreferenceHerridge, D. F., M. B. Peoples, and R. M. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311: 1 – 18.
dc.identifier.citedreferenceIPCC. 2013. Climate change 2013. The physical science basis. Summary for policymakers. United Nations, New York, New York, USA. http://www.ipcc.ch/
dc.identifier.citedreferenceIsbell, F., P. R. Adler, N. Eisenhauer, D. Fornara, K. Kimmel, C. Kremen, D. K. Letourneau, M. Liebman, H. W. Polley, and S. Quijas. 2017. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology 105: 871 – 879.
dc.identifier.citedreferenceKaye, J., D. Finney, C. White, B. Bradley, M. Schipanski, M. Alonso‐Ayuso, M. Hunter, M. Burgess, and C. Mejia. 2019. Managing nitrogen through cover crop species selection in the US mid‐Atlantic. PLoS ONE 14: e0215448.
dc.identifier.citedreferenceKing, A. E., and J. Blesh. 2018. Crop rotations for increased soil carbon: perenniality as a guiding principle. Ecological Applications 28: 249 – 261.
dc.identifier.citedreferenceKuzyakov, Y., and E. Blagodatskaya. 2015. Microbial hotspots and hot moments in soil: concept and review. Soil Biology and Biochemistry 83: 184 – 199.
dc.identifier.citedreferenceLayzell, D. B., and S. Hunt. 1990. Oxygen and the regulation of nitrogen fixation in legume nodules. Physiologia Plantarum 80: 322 – 327.
dc.identifier.citedreferenceLehmann, A., W. Zheng, and M. C. Rillig. 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1: 1828.
dc.identifier.citedreferenceLi, Y.‐Y., C.‐B. Yu, X. Cheng, C.‐J. Li, J.‐H. Sun, F.‐S. Zhang, H. Lambers, and L. Li. 2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N 2 fixation of faba bean. Plant and Soil 323: 295 – 308.
dc.identifier.citedreferenceLuce, M. S., J. K. Whalen, N. Ziadi, and B. J. Zebarth. 2016. Net nitrogen mineralization enhanced with the addition of nitrogen‐rich particulate organic matter. Geoderma 262: 112 – 118.
dc.identifier.citedreferenceMarriott, E. E., and M. Wander. 2006a. Qualitative and quantitative differences in particulate organic matter fractions in organic and conventional farming systems. Soil Biology and Biochemistry 38: 1527 – 1536.
dc.identifier.citedreferenceMarriott, E. E., and M. M. Wander. 2006b. Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal 70: 950 – 959.
dc.identifier.citedreferenceMcDaniel, M., L. Tiemann, and A. Grandy. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis. Ecological Applications 24: 560 – 570.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.