Show simple item record

A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell

dc.contributor.authorBollella, Paolo
dc.contributor.authorLee, Inhee
dc.contributor.authorBlaauw, David
dc.contributor.authorKatz, Evgeny
dc.date.accessioned2020-01-13T15:11:49Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:11:49Z
dc.date.issued2020-01-03
dc.identifier.citationBollella, Paolo; Lee, Inhee; Blaauw, David; Katz, Evgeny (2020). "A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell." ChemPhysChem 21(1): 120-128.
dc.identifier.issn1439-4235
dc.identifier.issn1439-7641
dc.identifier.urihttps://hdl.handle.net/2027.42/152860
dc.description.abstractBiocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter‐scale; 2×3×2 mm3) enzyme‐based biofuel cell was tested in a model glucose‐containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2–10 μW (depending on the glucose source). A microelectronic temperature‐sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power‐producing biofuel cell and power‐consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose‐containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.Sluggish sensor? A microelectronic sensor device was powered by an enzyme biofuel cell implanted in a slug to operate autonomously.
dc.publisherWiley-VCH
dc.subject.othersensor
dc.subject.otherpower management
dc.subject.othermicroelectronic device
dc.subject.otherimplantable cell
dc.subject.otherbiofuel cell
dc.titleA Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/1/cphc201900700_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/2/cphc201900700.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/3/cphc201900700-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cphc.201900700
dc.identifier.sourceChemPhysChem
dc.identifier.citedreferenceG. Fusco, G. Göbel, R. Zanoni, E. Kornejew, G. Favero, F. Mazzei, F. Lisdat, Electrochim. Acta 2017, 248, 64 – 74.
dc.identifier.citedreferenceB. Warneke, M. Last, B. Liebowitz, K. S. J. Pister, Computer 2001, 34, 44 – 51.
dc.identifier.citedreferenceS. Oh, Y. Lee, J. Wang, Z. Foo, Y. Kim, W. Jung, Z. Li, D. Blaauw, D. Sylvester, IEEE J. Solid-State Circuits 2015, 50, 1581 – 1591.
dc.identifier.citedreferenceW. Jung, S. Oh, S. Bang, Y. Lee, Z. Foo, G. Kim, Y. Zhang, D. Sylvester, D. Blaauw, IEEE J. Solid-State Circuits 2014, 49, 2800 – 2811.
dc.identifier.citedreferenceI. Lee, Y. Lee, D. Sylvester, D. Blaauw, IEEE J. Solid-State Circuits 2016, 51, 2743 – 2756.
dc.identifier.citedreferenceGray garden slug Deroceras reticulatum fact sheet: http://idtools.org/id/mollusc/factsheet.php?name=Deroceras%20reticulatum
dc.identifier.citedreferenceG. Fusco, G. Göbel, R. Zanoni, M. P. Bracciale, G. Favero, F. Mazzei, F. Lisdat, Biosens. Bioelectron. 2018, 112, 8 – 17.
dc.identifier.citedreferenceW. Jung, J. Gu, P. D. Myers, M. Shim, S. Jeong, K. Yang, M. Choi, Z. Foo, S. Bang, S. Oh, D. Sylvester, D. Blaauw, IEEE J. Solid-State Circuits, San Francisco, CA, 2016, pp. 154 – 155.
dc.identifier.citedreferenceK. Yang, Q. Dong, W. Jung, Y. Zhang, M. Choi, D. Blaauw, D. Sylvester, IEEE J. Solid-State Circuits, San Francisco, CA, 2017, pp. 160 – 161.
dc.identifier.citedreferenceT. Jang, M. Choi, S. Jeong, S. Bang, D. Sylvester, D. Blaauw, IEEE J. Solid-State Circuits, San Francisco, CA, 2016, pp. 102 – 103.
dc.identifier.citedreferenceY. Shi, M. Choi, Z. Li, Z. Luo, G. Kim, Z. Foo, H.-S. Kim, D. Wentzloff, D. Blaauw, IEEE J. Solid-State Circuits 2016, 51, 2570 – 2583.
dc.identifier.citedreferenceG. Göbel, I. W. Schubart, V. Scherbahn, F. Lisdat, Electrochem. Commun. 2011, 13, 1240 – 1243.
dc.identifier.citedreferenceV. Wernert, C. Lebouin, V. Benoit, R. Gadiou, A. de Poulpiquet, E. Lojou, R. Denoyel, Electrochim. Acta 2018, 283, 88 – 96.
dc.identifier.citedreferenceU. Salaj-Kosla, S. Pöller, Y. Beyl, M. D. Scanlon, S. Beloshapkin, S. Shleev, W. Schuhmann, E. Magner, Electrochem. Commun. 2012, 16, 92 – 95.
dc.identifier.citedreferenceV. Scherbahn, M. T. Putze, B. Dietzel, T. Heinlein, J. J. Schneider, F. Lisdat, Biosens. Bioelectron. 2014, 61, 631 – 638.
dc.identifier.citedreferenceC. Walgama, A. Pathiranage, M. Akinwale, R. Montealegre, J. Niroula, E. Echeverria, D. N. McIlroy, T. A. Harriman, D. A. Lucca, S. Krishnan, ACS Appl. Bio. Mater. 2019, 2, 2229 – 2236.
dc.identifier.citedreferenceA. J. Gross, M. Holzinger, S. Cosnier, Energy Environ. Sci. 2018, 11, 1670 – 1687.
dc.identifier.citedreferenceA. J. Gross, M. Holzinger, S. Cosnier, in: S. Cosnier (Ed.), Bioelectrochemistry. Design and Application of Biomaterials. Ch. 1, pp. 1–22, De Gruyter, 2019.
dc.identifier.citedreferenceY. Holade, K. MacVittie, T. Conlon, N. Guz, K. Servat, T. W. Napporn, K. B. Kokoh, E. Katz, Electroanalysis 2014, 26, 2445 – 2457.
dc.identifier.citedreferenceA. Nowakowska, M. Caputa, J. Rogalska, J. Physiol. Pharmacol. 2006, 57, 93 – 105.
dc.identifier.citedreferenceB. Reuillard, C. Abreu, N. Lalaoui, A. Le Goff, M. Holzinger, O. Ondel, F. Buret, S. Cosnier, Bioelectrochemistry 2015, 106, 73 – 76.
dc.identifier.citedreferenceB. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, PLoS One 2012, 7, art. No. e38436.
dc.identifier.citedreferenceY. Holade, K. MacVittie, T. Conlon, N. Guz, K. Servat, T. W. Napporn, K. B. Kokoh, E. Katz, Electroanalysis 2015, 27, 276 – 280.
dc.identifier.citedreferenceS. Kerzenmacher, J. Ducrée, R. Zengerle, F. von Stetten, J. Power Sources 2008, 182, 1 – 17.
dc.identifier.citedreferenceP. Atanassov, G. Johnson, H. Luckarift (Eds.), Enzymatic fuel cells: From fundamentals to applications, Wiley-VCH, Weinheim, Germany, 2014.
dc.identifier.citedreferenceM. Rasmussen, S. Abdellaoui, S. D. Minteer, Biosens. Bioelectron. 2016, 76, 91 – 102.
dc.identifier.citedreferenceI. Willner, E. Katz, Angew. Chem. Int. Ed. 2000, 39, 1180 – 1218; Angew. Chem. 2000, 112, 1230 – 1269.
dc.identifier.citedreferenceA. J. Gross, X. Chen, F. Giroud, C. Abreu, A. Le Goff, M. Holzinger, S. Cosnier, ACS Catal. 2017, 7, 4408 – 4416.
dc.identifier.citedreferenceM. J. Moehlenbrock, S. D. Minteer, Chem. Soc. Rev. 2008, 37, 1188 – 1196.
dc.identifier.citedreferenceS. A. Neto, A. R. De Andrade, J. Braz. Chem. Soc. 2013, 24, 1891 – 1912.
dc.identifier.citedreferenceE. Katz (Ed.), Implantable Bioelectronics – Devices, Materials and Applications, Wiley-VCH, Weinheim, Germany, 2014.
dc.identifier.citedreferenceC. Gonzalez-Solino, M. Di Lorenzo, Biosensors 2018, 8, art. No. 11.
dc.identifier.citedreferenceK. MacVittie, T. Conlon, E. Katz, Bioelectrochemistry 2015, 106, 28 – 33.
dc.identifier.citedreferenceV. Andoralov, M. Falk, D. B. Suyatin, M. Granmo, J. Sotres, R. Ludwig, V. O. Popov, J. Schouenborg, Z. Blum, S. Shleev, Sci. Rep. 2013, 3, art. No. 3270.
dc.identifier.citedreferenceS. C. Barton, J. Gallaway, P. Atanassov, Chem. Rev. 2004, 104, 4867 – 4886.
dc.identifier.citedreferenceA. Heller, Phys. Chem. Chem. Phys. 2004, 6, 2009 – 2016.
dc.identifier.citedreferenceA. Zebda, J.-P. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer, F. Boucher, P. Cinquin, D. K. Martin, Bioelectrochemistry 2018, 124, 57 – 72.
dc.identifier.citedreferenceS. Cosnier, A. Le Goff, M. Holzinger, Electrochem. Commun. 2014, 38, 19 – 23.
dc.identifier.citedreferenceE. Katz, Bioelectronic Medicine 2015, 2, 1 – 12.
dc.identifier.citedreferenceE. Katz, K. MacVittie, Energy Environ. Sci. 2013, 6, 2791 – 2803.
dc.identifier.citedreferenceA. J. Bandodkar, J. Wang, Electroanalysis 2016, 28, 1188 – 1200.
dc.identifier.citedreferenceA. J. Bandodkar, J. Electrochem. Soc. 2017, 164, H 3007 –H 3014.
dc.identifier.citedreferenceV. Coman, R. Ludwig, W. Harreither, D. Haltrich, L. Gorton, T. Ruzgas, S. A. Shleev, Fuel Cells 2010, 10, 9 – 16.
dc.identifier.citedreferenceM. Southcott, K. MacVittie, J. Halámek, L. Halámková, W. D. Jemison, R. Lobel, E. Katz, Phys. Chem. Chem. Phys. 2013, 15, 6278 – 6283.
dc.identifier.citedreferenceM. Cadet, S. Gounel, C. Stines-Chaumeil, X. Brilland, J. Rouhana, F. Louerat, N. Mano, Biosens. Bioelectron. 2016, 83, 60 – 67.
dc.identifier.citedreferenceC. Pan, Y. Fang, H. Wu, M. Ahmad, Z. Luo, Q. Li, J. Xie, X. Yan, L. Wu, Z. L. Wang, J. Zhu, Adv. Mater. 2010, 22, 5388 – 5392.
dc.identifier.citedreferenceD. Pankratov, L. Ohlsson, P. Gudmundsson, S. Halak, L. Ljunggren, Z. Blum, S. Shleev, RSC Adv. 2016, 6, 70215 – 70220.
dc.identifier.citedreferenceM. Rasmussen, R. E. Ritzmann, I. Lee, A. J. Pollack, D. Scherson, J. Am. Chem. Soc. 2012, 134, 1458 – 1460.
dc.identifier.citedreferenceL. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, J. Am. Chem. Soc. 2012, 134, 5040 – 5043.
dc.identifier.citedreferenceA. Szczupak, J. Halámek, L. Halámková, V. Bocharova, L. A. E. Katz, Energy Environ. Sci. 2012, 5, 8891 – 8895.
dc.identifier.citedreferenceK. MacVittie, J. Halámek, L. Halámková, M. Southcott, W. D. Jemison, R. Lobel, E. Katz, Energy Environ. Sci. 2013, 6, 81 – 86.
dc.identifier.citedreferenceJ. A. Castorena-Gonzalez, C. Foote, K. MacVittie, J. Halámek, L. Halámková, L. A. Martinez-Lemus, E. Katz, Electroanalysis 2013, 25, 1579 – 1584.
dc.identifier.citedreferenceP. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathe, P. Porcu, S. Cosnier, PLoS One 2010, 5, art. No. e10476.
dc.identifier.citedreferenceS. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin, J. Boutonnat, P. Cinquin, A. Zebda, D. K. Martin, Electrochim. Acta 2018, 269, 360 – 366.
dc.identifier.citedreferenceT. Miyake, K. Haneda, N. Nagai, Y. Yatagawa, H. Onami, S. Yoshino, T. Abe, M. Nishizawa, Energy Environ. Sci. 2011, 4, 5008 – 5012.
dc.identifier.citedreferenceM. Falk, D. Pankratov, L. Lindh, T. Arnebrant, S. Shleev, Fuel Cells 2014, 14, 1050 – 1056.
dc.identifier.citedreferenceA. J. Bandodkar, J.-M. You, N.-H. Kim, Y. Gu, R. Kumar, A. M. V. Mohan, J. Kurniawan, S. Imani, T. Nakagawa, B. Parish, M. Parthasarathy, P. P. Mercier, S. Xu, J. Wang, Energy Environ. Sci. 2017, 10, 1581 – 1589.
dc.identifier.citedreferenceM. Falk, V. Andoralov, Z. Blum, J. Sotres, D. B. Suyatin, T. Ruzgas, T. Arnebrant, S. Shleev, Biosens. Bioelectron. 2012, 37, 38 – 45.
dc.identifier.citedreferenceM. Falk, V. Andoralov, M. M. Silo, M. D. Toscano, S. Shleev, Anal. Chem. 2013, 85, 6342 – 6348.
dc.identifier.citedreferenceS. Cosnier, A. Le Goff, M. Holzinger, Electrochem. Commun. 2014, 38, 19 – 23.
dc.identifier.citedreferenceF. Shen, D. Pankratov, G. Pankratova, M. D. Toscano, J. D. Zhang, J. Ulstrup, Q. J. Chi, L. Gorton, Bioelectrochemistry 2019, 128, 94 – 99.
dc.identifier.citedreferenceX. X. Xiao, P. O. Conghaile, D. Leech, R. Ludwig, E. Magner, Biosens. Bioelectron. 2017, 90, 96 – 102.
dc.identifier.citedreferenceA. G. Mark, E. Suraniti, J. Roche, H. Richter, A. Kuhn, N. Mano, P. Fischer, Lab Chip 2017, 17, 1761 – 1768.
dc.identifier.citedreferenceK. Monsalve, I. Mazurenko, N. Lalaoui, A. Le Goff, M. Holzinger, P. Infossi, S. Nitsche, J. Y. Lojou, M. T. Giudici-Orticoni, S. Cosnier, E. Lojou, Electrochem. Commun. 2015, 60, 216 – 220.
dc.identifier.citedreferenceA. Zebda, S. Cosnier, J. P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, Sci. Rep. 2013, 3, art. No. 1516.
dc.identifier.citedreferenceM. Gamella, A. Koushanpour, E. Katz, Bioelectrochemistry 2018, 119, 33 – 42.
dc.identifier.citedreferenceD. Pankratov, E. González-Arribas, Z. Blum, S. Shleev, Electroanalysis 2016, 28, 1250 – 1266.
dc.identifier.citedreferenceZ. Xu, Y. Liu, I. Williams, Y. Li, F. Qian, L. Wang, Y. Lei, B. Li, Appl. Energy 2017, 194, 71 – 80.
dc.identifier.citedreferenceM. Kizling, S. Draminska, K. Stolarczyk, P. Tammela, Z. Wang, L. Nyholm, R. Bilewicz, Bioelectrochemistry 2015, 106, 34 – 40.
dc.identifier.citedreferenceK. Sode, T. Yamazaki, I. Lee, T. Hanashi, W. Tsugawa, Biosens. Bioelectron. 2016, 76, 20 – 28.
dc.identifier.citedreferenceY. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester, D. Blaauw, IEEE J. Solid-State Circuits 2013, 48, 229 – 243.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.