Show simple item record

Fluorescence Lifetime Imaging of a Caspase‐3 Apoptosis Reporter

dc.contributor.authorBuschhaus, Johanna M.
dc.contributor.authorGibbons, Anne E.
dc.contributor.authorLuker, Kathryn E.
dc.contributor.authorLuker, Gary D.
dc.date.accessioned2020-01-13T15:11:53Z
dc.date.available2020-01-13T15:11:53Z
dc.date.issued2017-12
dc.identifier.citationBuschhaus, Johanna M.; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D. (2017). "Fluorescence Lifetime Imaging of a Caspase‐3 Apoptosis Reporter." Current Protocols in Cell Biology 77(1): 21.12.1-21.12.12.
dc.identifier.issn1934-2500
dc.identifier.issn1934-2616
dc.identifier.urihttps://hdl.handle.net/2027.42/152863
dc.description.abstractCaspase‐3 is a proteolytic enzyme that functions as a key effector in apoptotic cell death. Determining activity of caspase‐3 provides critical information about cancer cell viability and response to treatment. To measure apoptosis in intact cells and living mice, a fluorescence imaging reporter that detects caspase‐3 activity by Förster resonance energy transfer (FRET) was used. Changes in FRET by fluorescence lifetime imaging microscopy (FLIM) were measured. Unlike FRET measurements based on fluorescence intensity, lifetime measurements are independent of reporter concentration and scattering of light in tissue, making FLIM a robust method for imaging in 3D environments. Apoptosis of breast cancer cells in 2D culture, spheroids, and in vivo murine breast tumor xenografts in response to a variety of genetic and pharmacologic methods implicated in apoptosis of cancer cells was studied. This approach for quantifying apoptosis of cancer cells is based on caspase‐3 activity at single‐cell resolution using FLIM. © 2017 by John Wiley & Sons, Inc.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherapoptosis
dc.subject.otherbreast cancer
dc.subject.othercaspase‐3
dc.subject.otherfluorescence lifetime imaging
dc.subject.otherFörster resonance energy transfer
dc.titleFluorescence Lifetime Imaging of a Caspase‐3 Apoptosis Reporter
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152863/1/cpcb2112.pdf
dc.identifier.doi10.1002/cpcb.36
dc.identifier.sourceCurrent Protocols in Cell Biology
dc.identifier.citedreferenceMasedunskas, A., Milberg, O., Porat‐Shliom, N., Sramkova, M., Wigand, T., Amornphimoltham, P., & Weigert, R. ( 2012 ). Intravital microscopy: A practical guide on imaging intracellular structures in live animals. Bioarchitecture, 2 ( 5 ), 143 – 157. doi: 10.4161/bioa.21758.
dc.identifier.citedreferenceOuyang, L., Shi, Z., Zhao, S., Wang, F., Zhou, T., Liu, B., & Bao, J. ( 2012 ). Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 45 ( 6 ), 487 – 498. doi: 10.1111/j.1365‐2184.2012.00845.x.
dc.identifier.citedreferenceSalomonnson, E., Mihalko, L., Verkhusha, V., Luker, K., & Luker, G. ( 2012 ). Cell‐based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy. Journal of Biomedical Optics, 17 ( 9 ), 96001. doi: 10.1117/1.JBO.17.9.096001.
dc.identifier.citedreferenceShcherbakova, D., Hink, M., Joosen, L., Gadella, T., & Verkhusha, V. ( 2012 ). An orange fluorescent protein with a large Stokes shift for single‐excitation multicolor FCCS and FRET imaging. Journal of the American Chemical Society, 134 ( 18 ), 7913 – 7923. doi: 10.1021/ja3018972.
dc.identifier.citedreferenceShrestha, D., Jenei, A., Nagy, P., Vereb, G., & Szöllősi, J. ( 2015 ). Understanding FRET as a research tool for cellular studies. International Journal of Molecular Sciences, 16 ( 4 ), 6718 – 6756. doi: 10.3390/ijms16046718.
dc.identifier.citedreferenceBouchier‐Hayes, L., Muñoz‐Pinedo, C., Connell, S., & Green, D. R. ( 2008 ). Measuring apoptosis at the single cell level. Methods, 44 ( 3 ), 222 – 228. doi: 10.1016/j.ymeth.2007.11.007.
dc.identifier.citedreferenceCavnar, S., Salomonsson, E., Luker, K., Luker, G., & Takayama, S. ( 2014 ). Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids. Journal of Laboratory Automation, 19 ( 2 ), 208 – 214. doi: 10.1177/2211068213504296.
dc.identifier.citedreferenceHoppe, A., Christensen, K., & Swanson, J. A. ( 2002 ). Fluorescence resonance energy transfer‐based stoichiometry in living cells. Biophysical Journal, 83 ( 6 ), 3652 – 3664. doi: 10.1016/S0006‐3495(02)75365‐4.
dc.identifier.citedreferenceJares‐Erijman, E. A., & Jovin, T. M. ( 2003 ). FRET imaging. Nature Biotechnology, 21 ( 11 ), 1387 – 1395. doi: 10.1038/nbt896.
dc.identifier.citedreferenceKerr, J. F. R., Wyllie, A. H., & Currie, A. R. ( 1972 ). Apoptosis: A basic biological phenomenon with wide‐ranging implications in tissue kinetics. British Journal of Cancer, 26 ( 4 ), 239 – 257. doi: 10.1038/bjc.1972.33.
dc.identifier.citedreferenceKwong, L., Costello, J., Liu, H., Jiang, S., Helms, T., Langsdorf, A., … Chin, L. ( 2012 ). Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nature Medicine, 18 ( 10 ), 1503 – 1510. doi: 10.1038/nm.2941.
dc.identifier.citedreferenceLuker, K. E., Mihalko, L. A., Schmidt, B. T., Lewin, S. A., Ray, P., Shcherbo, D., … Luker, G. D. ( 2012 ). In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nature Medicine, 18 ( 1 ), 172 – 177. doi: 10.1038/nm.2590.
dc.identifier.citedreferenceMcGlynn, S. P. ( 1966 ). Fluorescence and phosphorescence analysis. Principles and applications. Journal of the American Chemical Society, 88 ( 23 ), 5688 – 5688. doi: 10.1021/ja00975a083.
dc.identifier.citedreferenceYellen, G., & Mongeon, R. ( 2015 ). Quantitative two‐photon imaging of fluorescent biosensors. Current Opinion in Chemical Biology, 27, 24 – 30. doi: 10.1016/j.cbpa.2015.05.024.
dc.identifier.citedreferenceXiao, A., Gibbons, A., Luker, K., & Luker, G. ( 2015 ). Fluorescence lifetime imaging of apoptosis. Tomography, 1 ( 2 ), 115 – 124. doi: 10.18383/j.tom.2015.00163.
dc.identifier.citedreferenceWong, R. ( 2011 ). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30, 87. doi: 10.1186/1756‐9966‐30‐87.
dc.identifier.citedreferenceWang, Y., Zhang, B., Liu, W., Dai, Y., Shi, Y., Zeng, Q., & Wang, F. ( 2016 ). Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species. Oncotarget, 7 ( 16 ), 22355 – 22367. doi: 10.18632/oncotarget.7971.
dc.identifier.citedreferenceSuhling, K., Hirvonen, L. M., Levitt, J. A., Chung, P.‐H., Tregidgo, C., Le Marois, A., … Krstajic, N. ( 2015 ). Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Medical Photonics, 27, 3 – 40. doi: https://doi.org/10.1016/j.medpho.2014.12.001.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.