Show simple item record

Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models

dc.contributor.authorZheng, Yihua
dc.contributor.authorGanushkina, Natalia Yu
dc.contributor.authorJiggens, Pier
dc.contributor.authorJun, Insoo
dc.contributor.authorMeier, Matthias
dc.contributor.authorMinow, Joseph I.
dc.contributor.authorO’Brien, T. Paul
dc.contributor.authorPitchford, Dave
dc.contributor.authorShprits, Yuri
dc.contributor.authorTobiska, W. Kent
dc.contributor.authorXapsos, Michael A.
dc.contributor.authorGuild, Timothy B.
dc.contributor.authorMazur, Joseph E.
dc.contributor.authorKuznetsova, Maria M.
dc.date.accessioned2020-01-13T15:12:07Z
dc.date.availableWITHHELD_10_MONTHS
dc.date.available2020-01-13T15:12:07Z
dc.date.issued2019-10
dc.identifier.citationZheng, Yihua; Ganushkina, Natalia Yu; Jiggens, Pier; Jun, Insoo; Meier, Matthias; Minow, Joseph I.; O’Brien, T. Paul; Pitchford, Dave; Shprits, Yuri; Tobiska, W. Kent; Xapsos, Michael A.; Guild, Timothy B.; Mazur, Joseph E.; Kuznetsova, Maria M. (2019). "Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models." Space Weather 17(10): 1384-1403.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/152874
dc.description.abstractThe Community Coordinated Modeling Center has been leading community‐wide space science and space weather model validation projects for many years. These efforts have been broadened and extended via the newly launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/). Its objective is to track space weather models’ progress and performance over time, a capability that is critically needed in space weather operations and different user communities in general. The Space Radiation and Plasma Effects Working Team of the aforementioned International Forum works on one of the many focused evaluation topics and deals with five different subtopics (https://ccmc.gsfc.nasa.gov/assessment/topics/radiation‐all.php) and varieties of particle populations: Surface Charging from tens of eV to 50‐keV electrons and internal charging due to energetic electrons from hundreds keV to several MeVs. Single‐event effects from solar energetic particles and galactic cosmic rays (several MeV to TeV), total dose due to accumulation of doses from electrons (>100 keV) and protons (>1 MeV) in a broad energy range, and radiation effects from solar energetic particles and galactic cosmic rays at aviation altitudes. A unique aspect of the Space Radiation and Plasma Effects focus area is that it bridges the space environments, engineering, and user communities. The intent of the paper is to provide an overview of the current status and to suggest a guide for how to best validate space environment models for operational/engineering use, which includes selection of essential space environment and effect quantities and appropriate metrics.Plain Language SummaryIn order to track space weather models’ progress and performance over time, user‐focused metrics using proper physical quantities are critically needed. This paper summarizes the working team’s initial efforts of defining two types of interlinked physical quantities from both science and engineering perspectives in the subject of space radiation and plasma effects on space assets.Key PointsProviding an overview of the current status and proposing a guide for how to best validate space environment models for operational useTwo types of physical quantities for both science and engineering purposes have been identifiedProper metrics are needed for evaluating space environment models for different application purposes
dc.publisherWiley Periodicals, Inc.
dc.publisherFederal Aviation Administration Office of Aerospace Medicine
dc.subject.otherradiation effects at aviation altitudes
dc.subject.otherspace radiation and plasma effects on space assets
dc.subject.othervalidation and metrics
dc.subject.otherspace weather environment models
dc.subject.othersurface and internal charging
dc.subject.othersingle‐event effects
dc.titleSpace Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152874/1/swe20902_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152874/2/swe20902.pdf
dc.identifier.doi10.1029/2018SW002042
dc.identifier.sourceSpace Weather
dc.identifier.citedreferencePosner, A. ( 2007 ). Up to 1‐hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather, 5, S05001. https://doi.org/10.1029/2006SW000268
dc.identifier.citedreferenceRastätter, L., Wiegand, C., Mullinix, R. E., & MacNeice, P. J. ( 2019 ). Comprehensive Assessment of Models and Events Using Library Tools (CAMEL) framework: Time series comparisons. Space Weather, 17. https://doi.org/10.1029/2018SW002043
dc.identifier.citedreferenceReeves, G. D., Chen, Y., Cunningham, G. S., Friedel, R. W. H., Henderson, M. G., Jordanova, V. K., Koller, J., Morley, S. K., Thomsen, M. F. & Zaharia, S. ( 2012 ), Dynamic Radiation Environment Assimilation Model: DREAM. Space Weather, 10, S03006, https://doi.org/10.1029/2011SW000729
dc.identifier.citedreferenceRodgers, D. J. ( 1999 ). DICTAT Software: Users’ manual, Issue 3.0, DERA/CIS (CIS3).
dc.identifier.citedreferenceRubin, A. G., Katz, I., Mandell, M. J., Scnuelle, G., Steen, P., Parks, D., Cassidy, J. J., & Roche, J. C. ( 1980 ). A 3‐dimensional spacecraft charging computer code. In H. B. Garrett, & C. P. Pike (Eds.), Space Systems and their interactions with the Earths Space Environment, Progress in Astronautics and Aeronautics (Vol. 71 ). (Chapter 12, pp. 318 – 336 ). New York: AIAA.
dc.identifier.citedreferenceSawyer, D. M., & Vette, J. I., ( 1976 ). AP‐8 trapped proton environment for solar maximum and solar minimum, NSSDC/WDC‐A‐R&S 76‐06.
dc.identifier.citedreferenceSchraube, H., Leuthold, G., Heinrich, W., Roesler, S., Mares, V. & Schraube, G. ( 2002 ). EPCARD—European program package for the calculation of aviation route doses, User’s manual. GSF‐National Research Center, Neuherberg, Germany. ISSN 0721‐1694. GSF‐Report 08/02
dc.identifier.citedreferenceSchwadron, N. A., Townsend, L., Kozarev, K., Dayeh, M. A., Cucinotta, F., Desai, M., Golightly, M., Hassler, D., Hatcher, R., Kim, M. Y., Posner, A., PourArsalan, M., Spence, H. E., & Squier, R. K. ( 2010 ). Earth‐Moon‐Mars radiation environment module framework. Space Weather, 8, S00E02. https://doi.org/10.1029/2009SW000523
dc.identifier.citedreferenceSeltzer, S. M. ( 1994 ). Updated calculations for routine space‐shielding radiation dose estimates: SHIELDOSE‐2.Gaithersburg, MD, NIST Publication NISTIR 5477.
dc.identifier.citedreferenceShprits, Y. Y., Subbotin, D., & Ni, B. ( 2009 ). Evolution of electron fluxes in the outer radiation belt computed with the VERB code. Journal of Geophysical Research, 114, A11209. https://doi.org/10.1029/2008JA013784
dc.identifier.citedreferenceSicard‐Piet, A., Bourdarie, S., Boscher, D., & Friedel, R. H. W. ( 2006 ). A model for the geostationary electron environment: POLE, from 30 keV to 5.2 MeV. IEEE Transactions on Nuclear Science, 53 ( 4 ), 1844 – 1850. https://doi.org/10.1109/TNS.2006.877878
dc.identifier.citedreferenceSicard‐Piet, A., Bourdarie, S., Boscher, D., Friedel, R. H. W., Thomsen, M., Goka, T., Matsumoto, H., & Koshiishi, H. ( 2008 ). A new international geostationary electron model: IGE‐2006, from 1 keV to 5.2 MeV. Space Weather, 6, S07003. https://doi.org/10.1029/2007SW000368
dc.identifier.citedreferenceSmart, D. F., & Shea, M. A. ( 1994 ). Geomagnetic cutoffs: A review for space dosimetry applications. Advances in Space Research, 14 ( 10 ), 787 – 797.
dc.identifier.citedreferenceSmart, D. F., & Shea, M. A. ( 2001 ). A comparison of the Tsyganenko model predicted and measured geomagnetic cutoff latitudes. Advances in Space Research, 28 ( 12 ), 1733 – 1738.
dc.identifier.citedreferenceSmart, D. F., & Shea, M. A. ( 2003 ). The space‐developed dynamic vertical cutoff rigidity model and its applicability to aircraft radiation dose. Advances in Space Research, 32 ( 1 ), 103 – 108.
dc.identifier.citedreferenceSrour, J. R., & McGarrity, J. M. ( 1988 ). Radiation effects on microelectronics in space. Proceedings of the IEEE, 76 ( 11 ), 1443 – 1469.
dc.identifier.citedreferenceSubbotin, D. A., & Shprits, Y. Y. ( 2009 ). Three‐dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. https://doi.org/10.1029/2008SW000452
dc.identifier.citedreferenceThomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface‐charging environment at geosynchronous orbit. Space Weather, 11, 237 – 244. https://doi.org/10.1002/swe.20049
dc.identifier.citedreferenceTobiska, W. K., Atwell, W., Beck, P., Benton, E., Copeland, K., Dyer, C., Gersey, B., Getley, I., Hands, A., Holland, M., Hong, S., Hwang, J., Jones, B., Malone, K., Meier, M. M., Mertens, C., Phillips, T., Ryden, K., Schwadron, N., Wender, S. A., Wilkins, R., & Xapsos, M. A. ( 2015 ). Advances in atmospheric radiation measurements and modeling needed to improve air safety. Space Weather, 13, 202 – 210. https://doi.org/10.1002/2015SW001169
dc.identifier.citedreferenceTobiska, W. K., Bouwer, D., Smart, D., Shea, M., Bailey, J., Didkovsky, L., Judge, K., Garrett, H., Atwell, W., Gersey, B., Wilkins, R., Rice, D., Schunk, R., Bell, D., Mertens, C., Xu, X., Wiltberger, M., Wiley, S., Teets, E., Jones, B., Hong, S., & Yoon, K. ( 2016 ). Global real‐time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system. Space Weather, 14, 1053 – 1080. https://doi.org/10.1002/2016SW001419
dc.identifier.citedreferenceTobiska, W. K., Didkovsky, L., Judge, K., Weiman, S., Bouwer, D., Bailey, J., Atwell, B., Maskrey, M., Mertens, C., Zheng, Y., Shea, M., Smart, D., Gersey, B., Wilkins, R., Bell, D., Gardner, L., & Fuschino, R. ( 2018 ). Analytical representations for characterizing the global aviation radiation environment based on model and measurement databases. Space Weather, 16, 1523 – 1538. https://doi.org/10.1029/2018SW001843
dc.identifier.citedreferenceTylka, A. J., Adams, J. H., Boberg, P. R., Brownstein, B., Dietrich, W. F., Flueckiger, E. O., Petersen, E. L., Shea, M. A., Smart, D. F., & Smith, E. C. ( 1997 ). CREME96: A revision of the cosmic ray effects on micro‐electronics code. IEEE Transactions on Nuclear Science, 44 ( 6 ), 2150 – 2160.
dc.identifier.citedreferenceUkhorskiy, A. Y., Sitnov, M. I., Sharma, A. S., Anderson, B. J., Ohtani, S., & Lui, A. T. Y. ( 2004 ). Data‐derived forecasting model for relativistic electron intensity at geosynchronous orbit. Geophysical Research Letters, 31, L09806. https://doi.org/10.1029/2004GL019616
dc.identifier.citedreferenceVampola, A. L. ( 1996 ). Outer zone energetic electron environment update, Final Report of ESA/ESTEC Contract No..
dc.identifier.citedreferenceVelazco, R., Fouillat, P., & Reis, R. (Eds) ( 2007 ). Radiation effects on embedded systems. Netherlands: Springer. https://doi.org/10.1007/978‐1‐4020‐5646‐8 ISBN 9781402056468 (online) 9781402056451 (print)
dc.identifier.citedreferenceVette, J. I. ( 1991 ). The NASA/National Space Science Data Center Trapped Radiation Environment Model Program (1964–1991), NSSDC/WDC‐A‐R&S 91‐29.
dc.identifier.citedreferenceWinter, L. M., & Ledbetter, K. ( 2015 ). Type II and type III radio bursts and their correlation with solar energetic proton events. The Astrophysical Journal, 809, 105.
dc.identifier.citedreferenceWrenn, G. L., Rodgers, D. J., & Ryden, K. A. ( 2002 ). A solar cycle of spacecraft anomalies due to internal charging. Annales de Geophysique, 20 ( 7 ), 953 – 956.
dc.identifier.citedreferenceWrenn, G. L., & Smith, R. J. K. ( 1996 ). Probability factors governing. ESD effects in geosynchronous orbit. IEEE Transactions on Nuclear Science, NS‐43 ( 6 ), 2783 – 2789.
dc.identifier.citedreferenceXapsos, M. A., Summers, G. P., Barth, J. L., Stassinopoulos, E. G. & Burke, E. A. ( 1999 ). Probability model for worst case solar proton event fluences, IEEE Transactions on Nuclear Science, 46 ( 6 ), 1481 – 1485, https://doi.org/10.1109/23.819111
dc.identifier.citedreferenceXapsos, M. A., Summers, G. P., Barth, J. L., Stassinopoulos, E. G., & Burke, E. A. ( 2000 ). Probability Model for Cumulative Solar Proton Event Fluences, IEEE Trans. Nucl. Sci., 47, 486‐490, 2000. https://doi.org/10.1109/23.856469
dc.identifier.citedreferenceXapsos, M. A., Stauffer, C., Jordan, T., Barth, J. L., & Mewaldt, R. A. ( 2007 ). Model for cumulative solar heavy ion energy and linear energy transfer spectra. IEEE Transactions on Nuclear Science, 54 ( 6 ), 1985 – 1986.
dc.identifier.citedreferenceXiao, F., Shen, C., Wang, Y., Zheng, H., & Wang, S. ( 2008 ). Energetic electron distributions fitted with a relativistic kappa‐type function at geosynchronous orbit. Journal of Geophysical Research, 113, A05203. https://doi.org/10.1029/2007JA012903
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., Ridley, A. J., Albert, J. M., Horne, R. B., & Jeffery, C. A. ( 2016 ). A new ionospheric electron precipitation module coupled with RAM‐SCB within the geospace general circulation model. Journal of Geophysical Research: Space Physics, 121, 8554 – 8575. https://doi.org/10.1002/2016JA022585
dc.identifier.citedreferenceYu, Y., Rastätter, L., Jordanova, V. K., Zheng, Y., Engel, M., Fok, M.‐C., & Kuznetsova, M. M. ( 2019 ). Initial results from the GEM challenge on the spacecraft surface charging environment. Space Weather, 17, 299 – 312. https://doi.org/10.1029/2018SW002031
dc.identifier.citedreferenceZhao, H., Baker, D. N., Jaynes, A. N., Li, X., Kanekal, S. G., Blum, L. W., Schiller, Q. A., Leonard, T. W., Elkington, S. R. ( 2017 ). Radiation belt electron energy spectra characterization and evolution based on the Van Allen Probes measurements, American Geophysical Union, Fall Meeting 2017, abstract #SM22C‐01.
dc.identifier.citedreferenceAnastasiadis, A., Papaioannou, A., Sandberg, I., Georgoulis, M., Tziotziou, K., Kouloumvakos, A., Jiggens, P. ( 2017 ). Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool. Solar Physics, 292 ( 134 ). https://doi.org/10.1007/s11207‐017‐1163‐7
dc.identifier.citedreferenceAran, A., Sanahuja, B., & Lario, D. ( 2005 ). Fluxes and fluences of SEP events derived from SOLPENCO. Annales de Geophysique, 23, 3047 – 3053. https://doi.org/10.5194/angeo‐23‐3047‐2005
dc.identifier.citedreferenceAran, A., Sanahuja, B., & Lario, D. ( 2006 ). SOLPENCO: A solar particle engineering code. Advances in Space Research, 37 ( 6 ), 1240 – 1246. https://doi.org/10.1016/j.asr.2005.09.019
dc.identifier.citedreferenceBadhwar, G. D., & O’Neill, P. M. ( 1996 ). Galactic cosmic radiation model and its applications. Advances in Space Research, 17 ( 2 ), 7 – 17.
dc.identifier.citedreferenceBaker, D. N., McPherron, R. L., Cayton, T. E., & Klebesadel, R. W. ( 1990 ). Linear prediction filter analysis of relativistic electron properties at 6.6 R E. Journal of Geophysical Research, 95 ( A9 ), 15,133 – 15,140. https://doi.org/10.1029/JA095iA09p15133
dc.identifier.citedreferenceBalikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38, L18105. https://doi.org/10.1029/2011GL048980
dc.identifier.citedreferenceBeutier, T., & Boscher, D. ( 1995 ). A three‐dimensional analysis of the electron radiation belt by the Salammbô code, J. Geophys. Res., 100, 14, 853, https://doi.org/10.1029/94JA03066
dc.identifier.citedreferenceBodeau, M. ( 2005 ). Going beyond anomalies to engineering corrective action, new IESD guildelines derived from a root‐cause investigation. In 2005 Space Environmental Effects Working Group. Aerospace Corporation, El Segundo, CA.
dc.identifier.citedreferenceBodeau, M. ( 2010 ). High energy electron climatology that supports deep charging risk assessment in GEO, AIAA 2010‐1608. Paper presented at 48 th AIAA Aerospace Sciences Meeting, Orlando, FL.
dc.identifier.citedreferenceBoscher, D. M., Bourdarie, S. A., Friedel, R. H. W., & Belian, R. D. ( 2003 ). A model for the geostationary electron environment: POLE. IEEE Transactions on Nuclear Science, 50 ( 6 ), 2278 – 2283. https://doi.org/10.1109/TNS.2003.821609
dc.identifier.citedreferenceBourdarie, S., Friedel, R. H. W., Fennell, J., Kanekal, S., & Cayton, T. E. ( 2005 ). Radiation belt representation of the energetic electron environment: Model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data, Space Weather, 3, S04S01, https://doi.org/10.1029/2004SW000065
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Billings, S. A., & Amariutei, O. A. ( 2013 ). Application of nonlinear autoregressive moving average exogenous input models to geospace: Advances in understanding and space weather forecasts. Annales de Geophysique, 31 ( 9 ), 1579 – 1589. https://doi.org/10.5194/angeo‐31‐1579‐2013
dc.identifier.citedreferenceBrautigam, D. H., & Bell, J. T. ( 1995 ). CRRES electron omnidirectional flux models and CRRESELE utility, Proceedings of 1995 IEEE Nuclear and Space Radiation Effects Conference (NSREC’95), Madison, WI, USA, 1995, pp. 90‐.doi: https://doi.org/10.1109/REDW.1995.483404.
dc.identifier.citedreferenceChancellor, J., Scott, G., & Sutton, J. ( 2014 ). Space radiation: The number one risk to astronaut health beyond low Earth orbit. Life, 4 ( 3 ), 491 – 510.
dc.identifier.citedreferenceClauset, A., Shalizi, C. R., & Newman, M. E. J. ( 2009 ). Power‐law distributions in empirical data. SIAM Review, 51 ( 4 ), 661 – 703.
dc.identifier.citedreferenceCochran, D. J., Buchner, S. P., Chen, D., Kim, H. S., LaBel, K. A., Oldham, T. R., Campola, M. J., O’Bryan, M. V., Ladbury, R. L., Marshall, C., Sanders, A. B., Xapsos, M. A. ( 2009 ). Total ionizing dose and displacement damage compendium of candidate spacecraft electronics for NASA, 2009 IEEE Radiation Effects Data Workshop, Quebec City, QC, pp. 25–31. https://doi.org/10.1109/REDW.2009.5336318.
dc.identifier.citedreferenceCopeland, K. ( 2017 ). CARI‐7A: Development and validation. Radiation Protection Dosimetry, 178 ( 4 ), 419 – 431. https://doi.org/10.1093/rpd/ncw369
dc.identifier.citedreferenceCopeland, K. ( 2018 ). MIRA 2017: A CARI‐7 based solar radiation alert system (Report DOT/FAA/AM‐18/6). Washington, DC: Federal Aviation Administration Office of Aerospace Medicine.
dc.identifier.citedreferenceCopeland, K., Matthiä, D., & Meier, M. M. ( 2018 ). Solar cosmic ray dose rate assessments during GLE 72 using MIRA and PANDOCA. Space Weather, 16, 969 – 976. https://doi.org/10.1029/2018SW001917
dc.identifier.citedreferenceCrosby, N. B., Veronig, A., Robbrecht, E., Vrsnak, B., Vennerstrom, S., Malandraki, O., Dalla, S., Rodriguez, L., Srivastava, N., Hesse, M., Odstrcil, D., & Comesep Consortium ( 2012 ). Forecasting the space weather impact: The COMESEP project. In Q. Hu, et al. (Eds.), Space Weather: The Space Radiation Environment: 11th Annual International Astrophysics Conference, Am. Inst. of Phys. Conf. Ser. (Vol. 1500, pp. 159 – 164 ). College Park, Md: Am. Inst. Phys. https://doi.org/10.1063/1.4768760
dc.identifier.citedreferenceDaly, E., Glover, A., & Hilgers, A. ( 2007 ). Effects on spacecraft hardware and operations. In Space Weather: Physics and effects. Springer Praxis Books (Chapter 12, pp. 353 – 381 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978‐3‐540‐34578‐7_12
dc.identifier.citedreferenceDavis, V. A., & Mandell, M. J. ( 2014 ). Nascap‐2k scientific documentation for version 4.2, rev. ed, (p. 4 ). San Diego, CA: Leidos.
dc.identifier.citedreferenceDyer, C., Hands, A., Ryden, K., & Lei, F. ( 2018 ). Extreme atmospheric radiation environments and single event effects. IEEE Transactions on Nuclear Science, 65 ( 1 ), 432 – 438.
dc.identifier.citedreferenceDyer, C. S., & Truscott, P. R. ( 1999 ). Cosmic radiation effects on avionics. Microprocessors and Microsystems, 22 ( 8 ), 477 – 483.
dc.identifier.citedreferenceEdmonds, L. D., Barnes, C. E., & Scheick, L. Z. ( 2000 ). An introduction to space radiation effects on microelectronics, JPL publication 00‐06. Pasadena, California: Jet Propulsion Laboratory, California Institute of Technology.
dc.identifier.citedreferenceEngell, A. J., Falconer, D. A., Schuh, M., Loomis, J., & Bissett, D. ( 2017 ). SPRINTS: A framework for solar‐driven event forecasting and research. Space Weather, 15, 1321 – 1346. https://doi.org/10.1002/2017SW001660
dc.identifier.citedreferenceFerguson, D. C. ( 1985 ). Ram‐wake effects on plasma current collection of the PIX 2 Langmuir probe, Spacecraft Environment Interactions Technology, pp. 349–357.
dc.identifier.citedreferenceFerguson, D. C., & Hillard, G. B. ( 2003 ). Low Earth orbit spacecraft charging design guidelines. NASA/TP—2003‐212287.
dc.identifier.citedreferenceFerguson, D. C., Hilmer, R. V., & Davis, V. A. ( 2015 ). Best geosynchronous Earth orbit daytime spacecraft charging index. Journal of Spacecraft and Rockets, 52 ( 2 ), 526 – 543. https://doi.org/10.2514/1.A32959
dc.identifier.citedreferenceFeynman, J., & Gabriel, S. B. ( 2000 ). On space weather consequences and predictions. Journal of Geophysical Research, 105 ( A5 ), 10,543 – 10,564. https://doi.org/10.1029/1999JA000141
dc.identifier.citedreferenceFeynman, J., Spitale, G., Wang, J., & Gabriel, S. ( 1993 ), Interplanetary proton fluence model: JPL 1991, Journal Geophys. Res., 98 ( A8 ), 13281 – 13294, https://doi.org/10.1029/92JA02670
dc.identifier.citedreferenceFok, M.‐C., Buzulukova, N. Y., Chen, S.‐H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The Comprehensive Inner Magnetosphere‐Ionosphere Model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFrooninckx, T. B., & Sojka, J. J. ( 1992 ). Solar cycle dependence of spacecraft charging in low Earth orbit. Journal of Geophysical Research, 97 ( A3 ), 2985 – 2996. https://doi.org/10.1029/91JA02704
dc.identifier.citedreferenceGanushkina, N., Jaynes, A., & Liemohn, M. ( 2017 ). Space weather effects produced by the ring current particles. Space Science Reviews, 212 ( 3‐4 ), 1315 – 1344. https://doi.org/10.1007/s11214‐017‐0412‐2
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Welling, D., & Heynderickx, D. ( 2015 ). Nowcast model for low‐energy electrons in the inner magnetosphere. Space Weather, 13, 16 – 34. https://doi.org/10.1002/2014SW001098
dc.identifier.citedreferenceKoons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., & Anderson, P. C. ( 2000 ). The impact of space weather environment on space systems. In 6 th Spacecraft Charging Technology Conference. AFRL/USAF, Bedford, MA.
dc.identifier.citedreferenceGanushkina, N. Y., Sillanpää, I., Welling, D. T., Haiducek, J. D., Liemohn, M. W., Dubyagin, S., & Rodriguez, J. V. ( 2019 ). Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with long‐term GOES MAGED measurements of keV electron fluxes at geostationary orbit. Space Weather, 17, 687 – 708. https://doi.org/10.1029/2018SW002028
dc.identifier.citedreferenceGarrett, H. B. ( 2016 ). In G. V. Khazanov (Ed.), Spacecraft charging in the book of “Space Weather Fundamentals”. eBook ISBN 9781498749084 Boca Raton, London, New York: CRC Press, Taylor & Francis Group
dc.identifier.citedreferenceGarrett, H. B., & Whittlesey, A. C. ( 2012 ). Guide to mitigating spacecraft charging effects. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118241400
dc.identifier.citedreferenceGinet, G. P., O’Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., Lindstrom, C. D., Roth, C. J., Whelan, P., Quinn, R. A., Madden, D., Morley, S., & Su, Y.‐J. ( 2013 ). AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179 ( 1‐4 ), 579 – 615. https://doi.org/10.1007/s11214‐013‐9964‐y
dc.identifier.citedreferenceGlauert, S. A., Horne, R. B., & Meredith, N. P. ( 2014 ), Three‐dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers. Journal of Geophysical Research: Space Physics, 119, 268 – 289, https://doi.org/10.1002/2013JA019281
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Toth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2013 ). CRCM + BATS‐R‐US two way coupling. Journal of Geophysical Research: Space Physics, 118, 1635 – 1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceGlocer, A., Fok, M.‐C., Nagai, T., Tóth, G., Guild, T., & Blake, J. ( 2011 ). Rapid rebuilding of the outer radiation belt. Journal of Geophysical Research, 116, A09213. https://doi.org/10.1029/2011JA016516
dc.identifier.citedreferenceGussenhoven, M. S., Mullen, E. G., & Brautigam, D. H. ( 1994 ). Near‐Earth radiation model deficiencies as seen on CRRES. Advances in Space Research, 14, 927 – 491.
dc.identifier.citedreferenceHands, A. D. P., Ryden, K. A., Meredith, N. P., Glauert, S. A., & Horne, R. B. ( 2018 ). Radiation effects on satellites during extreme space weather events. Space Weather, 16, 1216 – 1226. https://doi.org/10.1029/2018SW001913
dc.identifier.citedreferenceHeynderickx, D., Kruglanski, M., Pierrard, V., Lemaire, J., Looper, M. D., & Blake, J. B. ( 1999 ). A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data. IEEE Transactions on Nuclear Science, 46 ( 6 ), 1475 – 1480.
dc.identifier.citedreferenceHorne, R. B., Phillips, M. W., Glauert, S. A., Meredith, N. P., Hands, A. D. P., Ryden, K., & Li, W. ( 2018 ). Realistic worst case for a severe space weather event driven by a fast solar wind stream. Space Weather, 16, 1202 – 1215. https://doi.org/10.1029/2018SW001948
dc.identifier.citedreferenceHorne, R. B., & Pitchford, D. ( 2015 ). Space weather concerns for all‐electric propulsion satellites. Space Weather, 13, 430 – 433. https://doi.org/10.1002/2015SW001198
dc.identifier.citedreferenceHosoda, S., Muranaka, T., Kuninaka, H., Kim, J., Hatta, S., Kurahara, N., Cho, M., Ueda, H. O., Koga, K., & Goka, T. ( 2008 ). Laboratory experiments for code validation of Multiutility Spacecraft Charging Analysis Tool (MUSCAT). IEEE Transactions on Plasma Science, 36 ( 5 ), 2350 – 2359. https://doi.org/10.1109/TPS.2008.2003973
dc.identifier.citedreferenceHwang, J., Dokgo, K., Choi, E., Kin, K.‐C., Kim, H.‐P., & Cho, K.‐S. ( 2014 ). Korean Radiation Exposure Assessment Model for aviation route dose: KREAM, KSS Fall meeting, Jeju, Korea, 29–31 Oct.
dc.identifier.citedreferenceJensen, Tara, & Brown, B. ( 2018 ). Terrestrial weather forecast verification and model evaluation tools, 2018 CCMC Workshop, College Park, MD, 23–27 April 2018.
dc.identifier.citedreferenceJiggens, P., Heynderickx, D., Sandberg, I., Truscott, P., Raukunen, O., & Vainio, R. ( 2018 ). Updated model of the solar energetic proton environment in space. Journal of Space Weather and Space Climate, 8, A31. https://doi.org/10.1051/swsc/2018010
dc.identifier.citedreferenceJordanova, V. K., Zaharia, S., & Welling, D. T. ( 2010 ). Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations. Journal of Geophysical Research, 115, A00J11. https://doi.org/10.1029/2010JA015671
dc.identifier.citedreferenceJordan, T. M. ( 1976 ), An adjoint charged particle transport method. IEEE Transactions on Nuclear Science, 23 ( 6 ), 1857 – 1861. https://doi.org/10.1109/TNS.1976.4328590
dc.identifier.citedreferenceJun, I., Garrett, H. B., Kim, W., & Minow, J. ( 2008 ). Review of an internal charging code, NUMIT. IEEE Transactions on Plasma Science, 36, 2467 – 2472.
dc.identifier.citedreferenceJun, I., Xapsos, M. A., Messenger, S. R., Burke, E. A., Walters, R. J., Summers, G. P., & Jordan, T. ( 2003 ). Proton nonionizing energy loss (NIEL) for device applications. IEEE Transactions on Nuclear Science, 50 ( 6 ), 1924 – 1928. https://doi.org/10.1109/TNS.2003.820760
dc.identifier.citedreferenceKellerman, A. C., Shprits, Y. Y., & Turner, D. L. ( 2013 ). A Geosynchronous Radiation–belt Electron Empirical Prediction (GREEP) model. Space Weather, 11, 463 – 475. https://doi.org/10.1002/swe.20074
dc.identifier.citedreferenceKim, W., Chinn, J. Z., Katz, I., Garrett, H. B., & Wong, K. F. ( 2017 ). 3‐D NUMIT: A general 3‐D internal charging code. IEEE Transactions on Plasma Science, 45 ( 8 ), 2298 – 2302. https://doi.org/10.1109/TPS.2017.2717805
dc.identifier.citedreferenceKing, J. H. ( 1974 ), Solar proton fluences for 1977–1983 space missions. Journal of Spacecraft and Rockets, 11, 401.
dc.identifier.citedreferenceLatocha, M., Beck, P., & Rollet, S. ( 2009 ). AVIDOS—A software package for European accredited aviation dosimetry. Radiation Protection Dosimetry, 136 ( 4 ), 286 – 290. https://doi.org/10.1093/rpd/ncp126
dc.identifier.citedreferenceLei, F. ( 2017 ). (RadMod Research), ESHIEM Project (ESA Contract 4000107025/12/NL/GLC): Technical Note 2a “Magnetosphere Shielding Model (MSM),” v1.5.
dc.identifier.citedreferenceLei, F., Hands, A., Dyer, C., & Truscott, P. ( 2006 ). Improvements to and validations of the QinetiQ Atmospheric Radiation Model (QARM). IEEE Transactions on Nuclear Science, 53 ( 4 ), 1851 – 1858.
dc.identifier.citedreferenceLei, F., Rodgers, D., & Truscott, P. ( 2016 ). MCICT—Monte Carlo Internal Charging Tool, 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, NL, 04–08 April 2016
dc.identifier.citedreferenceLi, X., Temerin, M., Baker, D. N., Reeves, G. D., & Larson, D. ( 2001 ). Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophysical Research Letters, 28 ( 9 ), 1887 – 1890. https://doi.org/10.1029/2000GL012681
dc.identifier.citedreferenceMalandraki, O. E., & Crosby, N. B. ( 2018 ). The HESPERIA HORIZON 2020 project and book on solar particle radiation storms forecasting and analysis. Space Weather, 16, 591 – 592. https://doi.org/10.1029/2018SW001950
dc.identifier.citedreferenceMares, V., Maczka, T., Leuthold, G., & Rühm, W. ( 2009 ). Air crew dosimetry with a new version of EPCARD. Radiation Protection Dosimetry, 136 ( 4 ), 262 – 266.
dc.identifier.citedreferenceMatéo‐Vélez, J.‐C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sillanpäa, I. ( 2018 ). Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather, 16, 89 – 106. https://doi.org/10.1002/2017SW001689
dc.identifier.citedreferenceMatthiä, D., Berger, T., Mrigakshi, A. I., & Reitz, G. ( 2013 ). A ready‐to‐use galactic cosmic ray model. Advances in Space Research, 51 ( 3 ), 329 – 338, ISSN 0273‐1177. https://doi.org/10.1016/j.asr.2012.09.022
dc.identifier.citedreferenceMatthiä, D., Meier, M. M., & Reitz, G. ( 2014 ). Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather, 12, 161 – 171. https://doi.org/10.1002/2013SW001022
dc.identifier.citedreferenceMazur, J. E., Zeitlin, C., Schwadron, N., Looper, M. D., Townsend, L. W., Blake, J. B., & Spence, H. ( 2015 ). Update on radiation dose from galactic and solar protons at the Moon using the LRO/CRaTER microdosimeter. Space Weather, 13, 363 – 364. https://doi.org/10.1002/2015SW001175
dc.identifier.citedreferenceMeier, M. M., Copeland, K., Matthiä, D., Mertens, C. J., & Schennetten, K. ( 2018 ). First steps toward the verification of models for the assessment of the radiation exposure at aviation altitudes during quiet space weather conditions. Space Weather, 16, 1269 – 1276. https://doi.org/10.1029/2018SW001984
dc.identifier.citedreferenceMeier, M. M., & Matthiä, D. ( 2014 ). A space weather index for the radiation field at aviation altitudes. Journal of Space Weather and Space Climate, 4, A13. https://doi.org/10.1041/swsc/2014010
dc.identifier.citedreferenceMeier, M. M., & Matthiä, D. ( 2018 ). Classification and Communication of Aviation Related Space Weather RadiationEvents. SF J Aviation Aeronaut Sci., (2018) 1 ( 1 ), https://scienceforecastoa.com/Articles/SJAAS‐V1‐E1‐1002.pdf
dc.identifier.citedreferenceMertens, C. J., Kress, B. T., Wiltberger, M., Blattnig, S. R., Slaba, T. C., Solomon, S. C., & Engel, M. ( 2010 ). Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003. Space Weather, 8, S03006. https://doi.org/10.1029/2009SW000487
dc.identifier.citedreferenceMertens, C. J., Meier, M. M., Brown, S., Norman, R. B., & Xu, X. ( 2013 ). NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather, 11, 603 – 635. https://doi.org/10.1002/swe.20100
dc.identifier.citedreferenceMessenger, S. R., E. A. Burke, M. A. Xapsos, G. P. Summers and R. J. Walters ( 2004 ), The Simulation of damage tracks in silicon, IEEE Transactions on Nuclear Science, Vol. 5 1, no. 5, pp. 2846 ‐ 2850. https://doi.org/10.1109/TNS.2004.835094
dc.identifier.citedreferenceMessenger, S. R., Summers, G. P., Burke, E. A., Walters, R. J., & Xapsos, M. A. ( 2001 ). Modeling solar cell degradation in space: A comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches. Progress in Photovoltaics: Research and Applications, 9 ( 2 ), 103 – 121. https://doi.org/10.1002/pip.357
dc.identifier.citedreferenceMessenger, S. R., Wong, F., Hoang, B., Cress, C. D., Walters, R. J., Kluever, C. A., & Jones, G. ( 2014 ). Low‐Thrust Geostationary Transfer Orbit (LT2GEO) radiation environment and associated solar array degradation modeling and ground testing. IEEE Transactions on Nuclear Science, 61 ( 6 ), 3348 – 3355. https://doi.org/10.1109/tns.2014.2364894
dc.identifier.citedreferenceMewaldt, R. A. ( 2006 ). Solar energetic particle composition, energy spectra, and space weather. Space Science Reviews, 124, 303 – 316.
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMuranaka, T., Hosoda, S., Hatta, S., Kim, J., Ikeda, K., Hamanaga, T., Cho, M., Ueda, H., Koga, O., & Goka, K. ( 2007 ). Development of multi‐utility spacecraft charging analysis tool (MUSCAT), in Proc. 10th Spacecr. Charging Technol. Conf., Biarritz, France.
dc.identifier.citedreferenceNASA‐HDBK‐4002A w/CHANGE 1 ( 2017 ). Mitigating in‐space charging effects—A guideline. NASA‐HDBK‐4002A. Washington, DC: National Aeronautics and Space Administration. Approved: 03‐03‐2011; REVALIDATED 2017‐10‐19
dc.identifier.citedreferenceNASA‐HDBK‐4006 ( 2007 ). Low Earth orbit spacecraft charging design handbook, NASA TECHNICAL HANDBOOK, Approved: 06‐03‐2007. National Aeronautics and Space Administration, Washington, DC.
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2010 ). Seasonal variations in diffuse, monoenergetic, and broadband auroratransient displays of light, often displaying as moving curtains and rays, at high latitudes associated with geomagnetic disturbances. Journal of Geophysical Research, 115, A03216. https://doi.org/10.1029/2009JA014805
dc.identifier.citedreferenceNormand, E. ( 1996 ). Single event effects in avionics. IEEE Transactions on Nuclear Science, 43, 461.
dc.identifier.citedreferenceNúñez, M. ( 2011 ). Predicting solar energetic proton events (E > 10 MeV). Space Weather, 9, S07003. https://doi.org/10.1029/2010SW000640
dc.identifier.citedreferenceNúñez, M. ( 2015 ). Real‐time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather, 13, 807 – 819. https://doi.org/10.1002/2015SW001256
dc.identifier.citedreferenceNúñez, M., Reyes‐Santiago, P. J., & Malandraki, O. E. ( 2017 ). Real‐time prediction of the occurrence of GLE events. Space Weather, 15, 861 – 873. https://doi.org/10.1002/2017SW001605
dc.identifier.citedreferenceNymmik, R. A. ( 1999 ). Probabilistic model for fluences and peak fluxes of solar energetic particles, Radiation Measurements, 30 ( 3 ), 287 – 296, https://doi.org/10.1016/S1350‐4487(99)00065‐7
dc.identifier.citedreferenceNymmik, R. A. ( 2007 ). Improved environment radiation models, Advances in Space Research, 40 ( 3 ), 313 – 320, https://doi.org/10.1016/j.asr.2006.12.028
dc.identifier.citedreferenceO’Brien, T. P. ( 2009 ). SEAES‐GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit. Space Weather, 7, S09003. https://doi.org/10.1029/2009SW000473
dc.identifier.citedreferenceO’Bryan, M. V., LaBel, K. A., Pellish, J. A., Lauenstein, J.‐M., Chen, D., Marshall, C. J., Casey, M. C., Gigliuto, R. A., Sanders, A. B., Oldham, T. R., Kim, H. S., Phan, A. M., Berg, M. D., Marshall, P. W., Ladbury, R. L., Wilcox, E. P., Boutte, A. J., Musil, P. L., Overend, G. A. ( 2009 ). Single event effects compendium of candidate spacecraft electronics for NASA, 2009 IEEE Radiation Effects Data Workshop, Quebec City, QC, 2009, pp. 15–24. https://doi.org/10.1109/REDW.2009.5336321
dc.identifier.citedreferenceO’Neill, P. M., Foster, C. C., & Badhwar‐O’Neill ( 2011 ), Galactic cosmic ray flux model description, Tech. Rep. NASA/TP‐2013‐217376.
dc.identifier.citedreferencePapaioannou, A., Anastasiadis, A., Kouloumvakos, A., Paassilta, M., Vainio, R., Valtonen, E., Belov, A., Eroshenko, E., Abunina, M., & Abunin, A. ( 2018 ). Nowcasting Solar Energetic Particle Events Using Principal Component Analysis. Solar Physics. 293 ( 7 ), 1. https://doi.org/10.1007/s11207‐018‐1320‐7
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.