Show simple item record

An Integrated Plasmo‐Photoelectronic Nanostructure Biosensor Detects an Infection Biomarker Accompanying Cell Death in Neutrophils

dc.contributor.authorPark, Younggeun
dc.contributor.authorRyu, Byunghoon
dc.contributor.authorDeng, Qiufang
dc.contributor.authorPan, Baihong
dc.contributor.authorSong, Yujing
dc.contributor.authorTian, Yuzi
dc.contributor.authorAlam, Hasan B.
dc.contributor.authorLi, Yongqing
dc.contributor.authorLiang, Xiaogan
dc.contributor.authorKurabayashi, Katsuo
dc.date.accessioned2020-01-13T15:12:23Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:12:23Z
dc.date.issued2020-01
dc.identifier.citationPark, Younggeun; Ryu, Byunghoon; Deng, Qiufang; Pan, Baihong; Song, Yujing; Tian, Yuzi; Alam, Hasan B.; Li, Yongqing; Liang, Xiaogan; Kurabayashi, Katsuo (2020). "An Integrated Plasmo‐Photoelectronic Nanostructure Biosensor Detects an Infection Biomarker Accompanying Cell Death in Neutrophils." Small 16(1): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/152883
dc.description.abstractBacterial infections leading to sepsis are a major cause of deaths in the intensive care unit. Unfortunately, no effective methods are available to capture the early onset of infectious sepsis near the patient with both speed and sensitivity required for timely clinical treatment. To fill the gap, the authors develop a highly miniaturized (2.5 × 2.5 µm2) plasmo‐photoelectronic nanostructure device that detected citrullinated histone H3 (CitH3), a biomarker released to the blood circulatory system by neutrophils. Rapidly detecting CitH3 with high sensitivity has the great potential to prevent infections from developing life‐threatening septic shock. To this end, the author’s device incorporates structurally engineered arrayed hemispherical gold nanoparticles that are functionalized with high‐affinity antibodies. A nanoplasmonic resonance shift induces a photoconduction increase in a few‐layer molybdenum disulfide (MoS2) channel, and it provides the sensor signal. The device achieves label‐free detection of serum CitH3 with a 5‐log dynamic range from 10−4 to 101 ng mL and a sample‐to‐answer time <20 min. Using this biosensor, the authors longitudinally measure the dynamic CitH3 profiles of individual living mice in a sepsis model at high resolution over 12 hours. The developed biosensor may be poised for future translation to personalized management of systemic bacterial infections.The lack of an appropriate biosensing technology to detect the early onset of bacterial infections has prohibited timely clinical treatment of sepitc shock. This article presents a highly miniaturized plasmo‐photoelectronic device incorporating high‐affinity antibody‐conjugated hemispherical gold nanoparticles and a few‐layer molybdenum disulfide (MoS2) photoconductive channel to detect a blood biomarker released by neutrophils with high speed and sensitivity.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercitrullinated histone H3 (CitH3)
dc.subject.otherlocalized surface plasmon resonance (LSPR)
dc.subject.othermolybdenum disulfide (MoS2)
dc.subject.otheroptoelectronic biosensors
dc.subject.othersepsis
dc.titleAn Integrated Plasmo‐Photoelectronic Nanostructure Biosensor Detects an Infection Biomarker Accompanying Cell Death in Neutrophils
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/1/smll201905611-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/2/smll201905611_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/3/smll201905611.pdf
dc.identifier.doi10.1002/smll.201905611
dc.identifier.sourceSmall
dc.identifier.citedreferenceD. G. Remick, G. R. Bolgos, J. Siddiqui, J. Shin, J. A. Nemzek, Shock 2002, 17, 463.
dc.identifier.citedreferenceJ. C. Marshall, K. Reinhart, Crit. Care Med. 2009, 37, 2290.
dc.identifier.citedreferenceE. Kolaczkowska, P. Kubes, Nat. Rev. Immunol. 2013, 13, 159.
dc.identifier.citedreferenceI. Neeli, S. N. Khan, M. Radic, J. Immunol. 2008, 180, 1895.
dc.identifier.citedreferenceY. Li, B. Liu, E. Y. Fukudome, J. Lu, W. Chong, G. Jin, Z. Liu, G. C. Velmahos, M. Demoya, D. R. King, H. B. Alam, Surgery 2011, 150, 442.
dc.identifier.citedreferenceB. Pan, H. B. Alam, W. Chong, J. Mobley, B. Liu, Q. Deng, Y. Liang, Y. Wang, E. Chen, T. Wang, M. Tewari, Y. Li, Sci. Rep. 2017, 7, 8972.
dc.identifier.citedreferenceJ. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442.
dc.identifier.citedreferenceB. Sepulveda, P. C. Angelome, L. M. Lechuga, L. M. Liz‐Marzan, Nano Today 2009, 4, 244.
dc.identifier.citedreferenceX. H. Wang, T.‐W. Chang, G. Lin, M. R. Gartia, G. L. Liu, Anal. Chem. 2017, 89, 611.
dc.identifier.citedreferenceS. M. Russell, R. de la Rica, Sens. Actuators, B 2018, 270, 327.
dc.identifier.citedreferenceF. Yesilkoy, R. A. Terborg, J. Pello, A. A. Belushkin, Y. Jahani, V. Pruneri, H. Altug, Light: Sci. Appl. 2018, 7, 17152.
dc.identifier.citedreferenceK. M. Mayer, J. H. Hafner, Chem. Rev. 2011, 111, 3828.
dc.identifier.citedreferenceY. Y. Wang, J. H. Zhou, J. H. Li, Small Methods 2017, 1, UNSP 1700197.
dc.identifier.citedreferenceP. Y. Chen, M. T. Chung, W. McHugh, R. Nidetz, Y. W. Li, J. P. Fu, T. T. Cornell, T. P. Shanley, K. Kurabayashi, ACS Nano 2015, 9, 4173.
dc.identifier.citedreferenceY. Zhang, Y. Tang, Y.‐H. Hsieh, C.‐Y. Hsu, J. Xi, K.‐J. Lin, X. Jiang, Lab Chip 2012, 12, 3012.
dc.identifier.citedreferenceY. Park, B. Ryu, B. R. Oh, Y. Song, X. Liang, K. Kurabayashi, ACS Nano 2017, 11, 5697.
dc.identifier.citedreferenceM. Chen, H. Nam, H. Rokni, S. Wi, J. S. Yoon, P. Chen, K. Kurabayashi, W. Lu, X. Liang, ACS Nano 2015, 9, 8773.
dc.identifier.citedreferenceQ. Deng, B. Pan, H. Alam, Y. Liang, B. Liu, N. Mor‐Vaknin, X. Duan, A. M. Williams, Y. Tian, Z. Wu, J. Zhang, Y. Li, Front. Immunol. 2019, Under review.
dc.identifier.citedreferenceJ. Sebaugh, P. McCray, Pharmaceutical Statistics 2003, 2, 167.
dc.identifier.citedreferenceS. J. Parker, P. E. Watkins, Br. J. Surg. 2001, 88, 22.
dc.identifier.citedreferenceK. A. Wichterman, A. E. Baue, I. H. Chaudry, J. Surg. Res. 1980, 29, 189.
dc.identifier.citedreferenceS. Q. Latifi, M. A. O’Riordan, A. D. Levine, Infect. Immun. 2002, 70, 4441.
dc.identifier.citedreferenceK. Doi, A. Leelahavanichkul, P. S. Yuen, R. A. Star, J. Clin. Invest. 2009, 119, 2868.
dc.identifier.citedreferenceS. Ruiz, F. Vardon‐Bounes, V. Merlet‐Dupuy, J.‐M. Conil, M. Buléon, O. Fourcade, I. Tack, V. Minville, Intensive Care Medicine Experimental 2016, 4, 22.
dc.identifier.citedreferenceW. Xiao, M. N. Mindrinos, J. Seok, J. Cuschieri, A. G. Cuenca, H. Gao, D. L. Hayden, L. Hennessy, E. E. Moore, J. P. Minei, P. E. Bankey, J. L. Johnson, J. Sperry, A. B. Nathens, T. R. Billiar, M. A. West, B. H. Brownstein, P. H. Mason, H. V. Baker, C. C. Finnerty, M. G. Jeschke, M. C. Lopez, M. B. Klein, R. L. Gamelli, N. S. Gibran, B. Arnoldo, W. Xu, Y. Zhang, S. E. Calvano, G. P. McDonald‐Smith, D. A. Schoenfeld, J. D. Storey, J. P. Cobb, H. S. Warren, L. L. Moldawer, D. N. Herndon, S. F. Lowry, R. V. Maier, R. W. Davis, R. G. Tompkins, Inflammation, P. Host Response to Injury Large‐Scale Collaborative Research, J. Exp. Med. 2011, 208, 2581.
dc.identifier.citedreferenceT. Zhao, B. Pan, H. B. Alam, B. Liu, R. T. Bronson, Q. Deng, E. Wu, Y. Li, Sci. Rep. 2016, 6, 36696.
dc.identifier.citedreferenceP. Y. Chen, N. T. Huang, M. T. Chung, T. T. Cornell, K. Kurabayashi, Adv. Drug Delivery Rev. 2015, 95, 90.
dc.identifier.citedreferenceR. Satija, A. K. Shalek, Trends Immunol. 2014, 35, 219.
dc.identifier.citedreferenceJ. W. Uhr, Science 1964, 145, 457.
dc.identifier.citedreferenceH. Nam, S. Wi, H. Rokni, M. Chen, G. Priessnitz, W. Lu, X. Liang, ACS Nano 2013, 7, 5870.
dc.identifier.citedreferenceT. Zhao, Y. Li, B. Liu, Z. Liu, W. Chong, X. Duan, D. K. Deperalta, G. C. Velmahos, H. B. Alam, Surgery 2013, 154, 206.
dc.identifier.citedreferenceF. B. Mayr, S. Yende, D. C. Angus, Virulence 2014, 5, 4.
dc.identifier.citedreferenceS. Laukemann, N. Kasper, P. Kulkarni, D. Steiner, A. C. Rast, A. Kutz, S. Felder, S. Haubitz, L. Faessler, A. Huber, C. A. Fux, B. Mueller, P. Schuetz, Medicine 2015, 94, e2264.
dc.identifier.citedreferenceB. D. W. Group, Clin. Pharmacol. Ther. 2001, 69, 89.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.