Show simple item record

Derivation of Lanthanide Series Crystal Field Parameters From First Principles

dc.contributor.authorJung, Julie
dc.contributor.authorIslam, M. Ashraful
dc.contributor.authorPecoraro, Vincent L.
dc.contributor.authorMallah, Talal
dc.contributor.authorBerthon, Claude
dc.contributor.authorBolvin, Hélène
dc.date.accessioned2020-01-13T15:12:37Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:12:37Z
dc.date.issued2019-11-27
dc.identifier.citationJung, Julie; Islam, M. Ashraful; Pecoraro, Vincent L.; Mallah, Talal; Berthon, Claude; Bolvin, Hélène (2019). "Derivation of Lanthanide Series Crystal Field Parameters From First Principles." Chemistry – A European Journal 25(66): 15112-15122.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/152893
dc.description.abstractTwo series of lanthanide complexes have been chosen to analyze trends in the magnetic properties and crystal field parameters (CFPs) along the two series: The highly symmetric LnZn16(picHA)16 series (Ln=Tb, Dy, Ho, Er, Yb; picHA=picolinohydroxamic acid) and the [Ln(dpa)3](C3H5N2)3⋅3H2O series (Ln=Ce–Yb; dpa=2,6‐dipicolinic acid) with approximate three‐fold symmetry. The first series presents a compressed coordination sphere of eight oxygen atoms whereas in the second series, the coordination sphere consists of an elongated coordination sphere formed of six oxygen atoms. The CFPs have been deduced from ab initio calculations using two methods: The AILFT (ab initio ligand field theory) method, in which the parameters are determined at the orbital level, and the ITO (irreducible tensor operator) decomposition, in which the problems are treated at the many‐electron level. It has been found that the CFPs are transferable from one derivative to another, within a given series, as a first approximation. The sign of the second‐order parameter B02 differs in the two series, reflecting the different environments. It has been found that the use of the strength parameter S allows for an easy comparison between complexes. Furthermore, in both series, the parameters have been found to decrease in magnitude along the series, and this decrease is attributed to covalent effects.The magnetic properties and crystal field parameters (CFPs) across two series of lanthanide complexes have been explored by ab initio calculations. It has been found that the CFPs are transferable from one derivative to another, within a given series, as a first approximation. Furthermore, in both series, the parameters have been found to decrease in magnitude across the series, attributed to covalent effects.
dc.publisherWiley
dc.subject.otherab initio calculations
dc.subject.othercrystal field theory
dc.subject.otherlanthanides
dc.subject.othermagnetic properties
dc.titleDerivation of Lanthanide Series Crystal Field Parameters From First Principles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152893/1/chem201903141.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152893/2/chem201903141_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152893/3/chem201903141-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201903141
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceB. O. Roos, P. R. Taylor, P. E. M. Siegbahn, Chem. Phys. 1980, 48, 157.
dc.identifier.citedreferenceF. Gendron, J. Autschbach, J. Malrieu, H. Bolvin, Inorg. Chem. 2019, 58, 581 – 593.
dc.identifier.citedreferenceL. Chibotaru, A. Ceulemans, H. Bolvin, Phys. Rev. Lett. 2008, 101, 033003.
dc.identifier.citedreferenceD. P. Hernández, H. Bolvin, J. Electron Spectrosc. Relat. Phenom. 2014, 194, 74.
dc.identifier.citedreferenceK. Lea, M. Leask, W. Wolf, J. Phys. Chem. Solids 1962, 23, 1381.
dc.identifier.citedreferenceM. Atanasov, C. A. Daul, C. Rauzy in Optical Spectra and Chemical Bonding in Inorganic Compounds: Special Volume Dedicated to Professor Jørgensen I (Eds.: D. M. P. Mingos, T. Schönherr ), Springer, Berlin, 2004, pp.  97 – 125.
dc.identifier.citedreferenceM. Atanasov, J. M. Zadrozny, J. R. Long, F. Neese, Chem. Sci. 2013, 4, 139 – 156.
dc.identifier.citedreferenceD. Aravena, M. Atanasov, F. Neese, Inorg. Chem. 2016, 55, 4457 – 4469.
dc.identifier.citedreferenceJ. Jung, M. Atanasov, F. Neese, Inorg. Chem. 2017, 56, 8802 – 8816.
dc.identifier.citedreferenceJ. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, Cambridge, 1961.
dc.identifier.citedreferenceR. N. Zare, Angular Momentum, Wiley, New York, 1988.
dc.identifier.citedreferenceW. Van den Heuvel, A. Soncini, J. Chem. Phys. 2013, 138, 054113.
dc.identifier.citedreferenceC. Y. Chow, H. Bolvin, V. E. Campbell, R. Guillot, J. W. Kampf, W. Wernsdorfer, F. Gendron, J. Autschbach, V. Pecoraro, T. Mallah, Chem. Sci. 2015, 6, 4148.
dc.identifier.citedreferenceP. Zhang, J. Jung, L. Zhang, J. Tang, B. Le Guennic, Inorg. Chem. 2016, 55, 1905 – 1911.
dc.identifier.citedreferenceL. Gagliardi, R. Lindh, G. Karlström, J. Chem. Phys. 2004, 121, 4494 – 4500.
dc.identifier.citedreferenceC.-K. Duan, P. A. Tanner, J. Phys. Chem. A 2010, 114, 6055 – 6062.
dc.identifier.citedreferenceT. R. Faulkner, J. P. Morley, F. S. Richardson, R. W. Schwartz, Mol. Phys. 1980, 40, 1481 – 1488.
dc.identifier.citedreferenceN. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino, Y. Kaizu, Inorg. Chem. 2003, 42, 2440 – 2446.
dc.identifier.citedreferenceC. N. Reilley, B. W. Good, J. F. Desreux, Anal. Chem. 1975, 47, 2110 – 2116.
dc.identifier.citedreferenceM. Vonci, K. Mason, E. A. Suturina, A. T. Frawley, S. G. Worswick, I. Kuprov, D. Parker, E. J. L. McInnes, N. F. Chilton, J. Am. Chem. Soc. 2017, 139, 14166 – 14172.
dc.identifier.citedreferenceP. de Loth, P. Cassoux, J. P. Daudey, J. P. Malrieu, J. Am. Chem. Soc. 1981, 103, 4007.
dc.identifier.citedreferenceR. Ruamps, R. Maurice, C. de Graaf, N. Guihiéry, Inorg. Chem. 2014, 53, 4508 – 4516.
dc.identifier.citedreferenceF. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-A. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitonak, M. Reiher, B. Roos, M. SerranoAndrés, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 2010, 31, 224.
dc.identifier.citedreferenceL. Ungur in Lanthanide-Based Multifunctional Materials, Advanced Nanomaterials (Eds.: P. Martín-Ramos, M. Ramos Silva ), Elsevier, Amsterdam, 2018, pp.  1 – 58.
dc.identifier.citedreferenceR. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328 – 2341.
dc.identifier.citedreferenceB. Bleaney, J. Magn. Reson. (1969) 1972, 8, 91.
dc.identifier.citedreferenceH. Bethe, Ann. Phys. 1929, 395, 133.
dc.identifier.citedreferenceJ. H. Van Vleck, J. Chem. Phys. 1935, 3, 807.
dc.identifier.citedreferenceG. Racah, Phys. Rev. 1949, 76, 1352.
dc.identifier.citedreferenceK. W. H. Stevens, Proc. Phys. Soc. London Sect. A 1952, 65, 209.
dc.identifier.citedreferenceB. G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.
dc.identifier.citedreferenceH. Schilder, H. Lueken, J. Magn. Magn. Mater. 2004, 281, 17 – 26.
dc.identifier.citedreferenceN. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164 – 1175.
dc.identifier.citedreferenceJ. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078 – 2085.
dc.identifier.citedreferenceJ. J. Baldovì, J. J. Borrás-Almenar, J. M. ClementeJuan, E. Coronado, A. Gaita-Arino, Dalton Trans. 2012, 41, 13705.
dc.identifier.citedreferenceJ. J. Baldovì, J. M. Clemente-Juan, E. Coronado, A. Gaita-Arino, Inorg. Chem. 2014, 53, 11323 – 11327.
dc.identifier.citedreferenceG. Huang, G. Fernandez-Garcia, I. Badiane, M. Camarra, S. Freslon, O. Guillou, C. Daiguebonne, F. Totti, O. Cador, T. Guizouarn, B. Le Guennic, K. Bernot, Chem. Eur. J. 2018, 24, 6983 – 6991.
dc.identifier.citedreferenceN. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, A. Soncini, Nat. Commun. 2013, 4, 2551.
dc.identifier.citedreferenceG. R. Choppin, Pure Appl. Chem. 2002, 27, 23 – 42.
dc.identifier.citedreferenceG. R. Choppin, J. Alloys Compd. 2002, 344, 55 – 59.
dc.identifier.citedreferenceM. L. Neidig, D. L. Clark, R. L. Martin, Coord. Chem. Rev. 2013, 257, 394 – 406.
dc.identifier.citedreferenceT. Gupta, M. K. Singh, G. Rajaraman in Topics in Organometallic Chemistry, Springer, Berlin, 2018, pp.  1 – 74.
dc.identifier.citedreferenceL. Chibotaru, L. Ungur, J. Chem. Phys. 2012, 137, 064112.
dc.identifier.citedreferenceP.-A. Malmqvist, B. O. Roos, B. Schimmelpfennig, Chem. Phys. Lett. 2002, 357, 230.
dc.identifier.citedreferenceB. A. Hess, Phys. Rev. A 1986, 33, 3742.
dc.identifier.citedreferenceB. A. Hess, C. M. Marian, U. Wahlgren, O. Gropen, Chem. Phys. Lett. 1996, 251, 365.
dc.identifier.citedreferenceS. López-Moraza, J. L. Pascual, Z. Barandiarán, J. Chem. Phys. 1995, 103, 2117 – 2125.
dc.identifier.citedreferenceH. Bolvin, ChemPhysChem 2006, 7, 1575.
dc.identifier.citedreferenceF. Neese, WIREs Computational Molecular Science 2018, 8, e1327.
dc.identifier.citedreferenceM. Reiher, Theor. Chem. Acc. 2006, 116, 241 – 252.
dc.identifier.citedreferenceT. Nakajima, K. Hirao, Chem. Rev. 2012, 112, 385 – 402.
dc.identifier.citedreferenceF. Neese, J. Chem. Phys. 2005, 122, 034107.
dc.identifier.citedreferenceD. Aravena, F. Neese, D. A. Pantazis, J. Chem. Theory Comput. 2016, 12, 1148 – 1156.
dc.identifier.citedreferenceF. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753 – 12762.
dc.identifier.citedreferenceF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305.
dc.identifier.citedreferenceG. L. Stoychev, A. A. Auer, F. Neese, J. Chem. Theory Comput. 2017, 13, 554 – 562.
dc.identifier.citedreferenceF. Neese, J. Comput. Chem. 2003, 24, 1740 – 1747.
dc.identifier.citedreferenceH. Bolvin, J. Autschbach in Handbook of Relativistic Quantum Chemistry (Ed.: W. Liu ), Springer, Berlin, 2017, pp.  725 – 763.
dc.identifier.citedreferenceR. Maurice, R. Bastardis, C. de Graaf, N. Suaud, T. Mallah, N. Guihéry, J. Chem. Theory Comput. 2009, 5, 2977.
dc.identifier.citedreferenceF. P. Notter, H. Bolvin, J. Chem. Phys. 2009, 130, 184310.
dc.identifier.citedreferenceJ. Jankolovits, C. M. Andolina, J. W. Kampf, K. N. Raymond, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 9660 – 9664; Angew. Chem. 2011, 123, 9834 – 9838.
dc.identifier.citedreferenceI. Martinic, S. V. Eliseeva, T. N. Nguyen, V. L. Pecoraro, S. Petoud, J. Am. Chem. Soc. 2017, 139, 8388 – 8391.
dc.identifier.citedreferenceJ. W. Kampf, T. Mallah, V. L. Pecoraro, private communication.
dc.identifier.citedreferenceM. Autillo, L. Guerin, T. Dumas, M. S. Grigoriev, A. M. Fedoseev, S. Cammeli, P. L. Solari, P. Guilbaud, P. Moisy, H. Bolvin, C. Berthon, Chem. Eur. J. 2019, 25, 4435.
dc.identifier.citedreferenceM. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, F. Neese, Coord. Chem. Rev. 2015, 289, 177.
dc.identifier.citedreferenceL. Ungur, L. F. Chibotaru, Chem. Eur. J. 2017, 23, 3708 – 3718.
dc.identifier.citedreferenceR. Alessandri, H. Zulfikri, J. Autschbach, H. Bolvin, Chem. Eur. J. 2018, 24, 5538 – 5550.
dc.identifier.citedreferenceA. Abragam, B. Bleaney, Electronic Paramagnetic Resonance of Transition Ions, Clarendon, Oxford, 1970.
dc.identifier.citedreferenceC. Görller-Walrand, K. Binnemans in Handbook on the Physics and Chemistry of Rare Earths, Vol. 23 (Eds.: K. A. Gschneidner, Jr., L. Eyring ), Elsevier, Amsterdam, 1996, Chapter 155.
dc.identifier.citedreferenceC. Rudowicz, J. Qin, Phys. Rev. B 2003, 67, 174420.
dc.identifier.citedreferenceN. C. Chang, J. B. Gruber, R. P. Leavitt, C. A. Morrison, J. Chem. Phys. 1982, 76, 3877 – 3889.
dc.identifier.citedreferenceY. Y. Yeung in Crystal Field Handbook (Eds.: D. J. Newman, B. K. C. Ng ), Cambridge University Press, Cambridge, 2000, pp.  160 – 175.
dc.identifier.citedreferenceG. Charron, E. Malkin, G. Rogez, L. J. Batchelor, S. Mazerat, R. Guillot, N. Guihéry, A. L. Barra, T. Mallah, H. Bolvin, Chem. Eur. J. 2016, 22, 16850 – 16860.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.