Show simple item record

Methods to Crystallize RNA

dc.contributor.authorFerré‐d’Amaré, Adrian R.
dc.contributor.authorDoudna, Jennifer A.
dc.date.accessioned2020-01-13T15:12:50Z
dc.date.available2020-01-13T15:12:50Z
dc.date.issued2000-07
dc.identifier.citationFerré‐d’Amaré, Adrian R. ; Doudna, Jennifer A. (2000). "Methods to Crystallize RNA." Current Protocols in Nucleic Acid Chemistry 1(1): 7.6.1-7.6.13.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152900
dc.description.abstractPreparation of suitably large and wellâ ordered single crystals is usually the rateâ limiting step in the determination of the threeâ dimensional structure of RNAs and their complexes with proteins by Xâ ray crystallography. This unit discusses a variety of experimental considerations for obtaining crystals of RNAs and RNAâ protein complexes. Topics include design of crystallizable constructs, screening, and optimization of crystallization conditions.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.titleMethods to Crystallize RNA
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152900/1/cpnc0706.pdf
dc.identifier.doi10.1002/0471142700.nc0706s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceRuff, M., Mitschler, A., Cavarelli, J., Giegé, R., Mikol, V., Thierry, J.C., Lorber, B., and Moras, D. 1988. A high resolution diffracting crystal form of the complex between yeast tRNA Asp and aspartylâ tRNA synthetase. J. Mol. Biol. 201: 235 â 236.
dc.identifier.citedreferencePrice, S.R., Ito, N., Oubridge, C., Avis, J.M., and Nagai, K. 1995. Crystallization of RNAâ protein complexes I. Methods for the largeâ scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249: 398 â 408.
dc.identifier.citedreferencePrice, S.R., Evans, P.R., and Nagai, K. 1998. Crystal structure of the spliceosomal U2Bâ ³U2Aâ ² protein complex bound to a fragment of U2 small nuclear RNA. Nature 394: 645 â 650.
dc.identifier.citedreferencePuttaraju, M. and Been, M.D. 1992. Group I permuted intronâ exon (PIE) sequences selfâ splice to produce circular exons. Nucl. Acids Res. 20: 5357 â 5364.
dc.identifier.citedreferenceRichardson, J.S. and Richardson, D.C. 1985. Interpretation of electron density maps. Methods Enzymol. 115: 189 â 206.
dc.identifier.citedreferenceRobertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F.C., and Klug, A. 1974. Structure of yeast phenylalanine tRNA at 3Ã resolution. Nature. 250: 546 â 551.
dc.identifier.citedreferenceRodgers, D.W. 1997. Practical cryocrystallography. Methods Enzymol. 276: 183 â 203.
dc.identifier.citedreferenceRould, M.A., Perona, J.J., and Steitz, T.A. 1991. Structural basis of anticodon loop recognition by glutaminylâ tRNA synthetase. Nature. 352: 213 â 218.
dc.identifier.citedreferenceSaenger, W. 1984. Principles of Nucleic Acid Structure. Springerâ Verlag, New York.
dc.identifier.citedreferenceSchevitz, R.W., Podjarny, A.D., Krishnamachari, N., Hughes, J.J., Sigler, P.B., and Sussman, J.L. 1979. Crystal structure of a eukaryotic initiator tRNA. Nature 278: 188 â 190.
dc.identifier.citedreferenceSchindelin, H., Zhang, M., Bald, R., Fürste, J.â P., Erdmann, V.A., and Heinemann, U. 1995. Crystal structure of an RNA dodecamer containing the Escherichia coli Shineâ Delgarno sequence. J. Mol. Biol. 249: 595 â 603.
dc.identifier.citedreferenceSchultz, S.C., Shields, G.C., and Steitz, T.A. 1990. Crystallization of Escherichia coli catabolite gene activator protein with its DNA binding site the use of modular DNA. J. Mol. Biol. 213: 159 â 166.
dc.identifier.citedreferenceScott, W.G., Finch, J.T., Grenfell, R., Fogg, J., Smith, T., Gait, M.J., and Klug, A. 1995a. Rapid crystallization of chemically synthesized hammerhead RNA’s using a double screening procedure. J. Mol. Biol. 250: 327 â 332.
dc.identifier.citedreferenceScott, W.G., Finch, J.T., and Klug, A. 1995b. The crystal structure of an allâ RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 81: 991 â 1002.
dc.identifier.citedreferenceShah, S.A. and Brunger, A.T. 1999. The 1.8 Ã crystal structure of a statically disordered 17 baseâ pair RNA duplex: principles of RNA crystal packing and its effect on nucleic acid structure. J. Mol. Biol. 285: 1577 â 88.
dc.identifier.citedreferenceSmith, J.L. and Thompson, A. 1998. Reactivity of selenomethionineâ â dents in the magic bullet? Structure 6: 815 â 819.
dc.identifier.citedreferenceStura, E.A. and Wilson, I.A. 1990. Analytical and production seeding techniques. Methods 1: 38 â 49.
dc.identifier.citedreferenceSu, L., Chen, L., Egli, M., Berger, J.M., and Rich, A. 1999. Minor groove RNA triplex in the crystal structure of a viral pseudoknot involved in ribosomal frameshifting. Nature Struct. Biol. 6: 285 â 292.
dc.identifier.citedreferenceSwanson, S.M. 1988. Effective resolution of macromolecular Xâ ray diffraction data. Acta Crystallogr. A44: 437 â 442.
dc.identifier.citedreferenceWeber, P.C. 1997. Overview of protein crystallization methods. Methods Enzymol. 276: 13 â 22.
dc.identifier.citedreferenceWukovitz, S.W. and Yeates, T.O. 1995. Why protein crystals favor some spaceâ groups over others. Nature Struct. Biol. 2: 1062 â 1067.
dc.identifier.citedreferenceYeates, T.O. 1997. Detecting and overcoming crystal twinning. Methods Enzymol. 276: 344 â 358.
dc.identifier.citedreferenceAggarwal, A.K. 1990. Crystallization of DNA binding proteins with oligodeoxynucleotides. Methods 1: 83 â 90.
dc.identifier.citedreferenceAnderson, A.C., Earp, B.E., and Frederick, C.A. 1996. Sequence variation as a strategy for crystallizing RNA motifs. J. Mol. Biol. 259: 696 â 703.
dc.identifier.citedreferenceBaeyens, K.J., De Bondt, H.L., and Holbrook, S.R. 1995. Structure of an RNA double helix including uracilâ uracil base pairs in an internal loop. Nature Struct. Biol. 2: 56 â 62.
dc.identifier.citedreferenceBasavappa, R. and Sigler, P.B. 1991. The 3 Ã crystal structure of yeast initiator tRNA: Functional implications in initiator/elongator discrimination. EMBO J. 10: 3105 â 3111.
dc.identifier.citedreferenceBerger, I., Kang, C., Sinha, N., Wolters, M., and Rich, A. 1996. A highly efficient 24â condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr. Sect. D Biol. Crystallogr. 52: 465 â 468.
dc.identifier.citedreferenceBerman, H.M., Gelbin, A., and Westbrook, J. 1996. Nucleic acid crystallography: A view from the nucleic acid database. Prog. Biophys. Mol. Biol. 66: 255 â 288.
dc.identifier.citedreferenceBlundell, T.L. and Johnson, L.N. 1976. Protein Crystallography. Academic Press, London.
dc.identifier.citedreferenceBurns, G. and Glazer, A.M. 1990. Space groups for solid state scientists. Academic Press, Boston.
dc.identifier.citedreferenceCarter, C.W. 1997. Response surface methods for optimizing and improving reproducibility of crystal growth. Methods Enzymol. 276: 74 â 99.
dc.identifier.citedreferenceCarter, C.W., Jr. and Carter, C.W. 1979. Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 254: 12219 â 12223.
dc.identifier.citedreferenceCate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A. 1996. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273: 1678 â 1685.
dc.identifier.citedreferenceChayen, N.E. 1997. The role of oil in macromolecular crystallization. Structure 5: 1269 â 1274.
dc.identifier.citedreferenceChayen, N., Stewart, P.D.S., and Blow, D.M. 1992. Microbatch crystallization under oilâ a new technique allowing many smallâ volume crystallization trials. J. Cryst. Growth. 122: 176 â 80.
dc.identifier.citedreferenceCohen, S.L. 1996. Domain elucidation by mass spectrometry. Structure 4: 1013 â 1016.
dc.identifier.citedreferenceCorrell, C.C., Freeborn, B., Moore, P.B., and Steitz, T.A. 1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91: 705 â 712.
dc.identifier.citedreferenceCorrell, C.C., Munishkin, A., Chan, Y.â L., Ren, Z., Wool, I.G., and Steitz, T.A. 1998. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl. Acad. Sci. U.S.A. 95: 13436 â 13441.
dc.identifier.citedreferenceCudney, B., Patel, S., Weisgraber, K., Newhouse, Y., and McPherson, A. 1994. Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr. Sect. D Biol. Crystallogr. 50: 414 â 423.
dc.identifier.citedreferenceD’Arcy, A. 1994. Crystallizing proteinsâ a rational approach? Acta Crystallogr. Sect. D Biol. Crystallogr. 50: 469 â 471.
dc.identifier.citedreferenceDickerson, R.E., Goodsell, D.S., and Neidle, S. 1994. â â ¦ the tyranny of the lattice â ¦â . Proc. Natl. Acad. Sci. U.S.A. 91: 3579 â 3583.
dc.identifier.citedreferenceDoublié, S. 1997. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276: 523 â 530.
dc.identifier.citedreferenceDoudna, J.A. and Cech, T.R. 1995. Selfâ assembly of a group I intron active site from its component tertiary structural domains. RNA 1: 36 â 45.
dc.identifier.citedreferenceDoudna, J., Grosshans, C., Gooding, A., and Kundrot, C.E. 1993. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc. Natl. Acad. Sci. U.S.A. 90: 7829 â 7833.
dc.identifier.citedreferenceDrenth, J. 1994. Principles of Protein Xâ ray Crystallography. Springerâ Verlag, New York.
dc.identifier.citedreferenceDubochet, J., Adrian, M., Chang, J.â J., Homo, J.â C., Lepault, J., McDowall, A.W., and Schultz, P. 1988. Cryoâ electron microscopy of vitrefied specimens. Q. Rev. Biophys. 21: 129 â 228.
dc.identifier.citedreferenceDucruix, A. and Geigé, R. (eds.). 1992. Crystallization of Nucleic Acids and Proteins: A Practical Approach. Oxford University Press, Oxford.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R. and Burley, S.K. 1997. Dynamic light scattering in evaluating crystallizability of macromolecules. Methods Enzymol. 276: 157 â 166.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R. and Doudna, J.A. 1996. Use of cis â and trans â ribozymes to remove 5â ² and 3â ² heterogeneities from milligrams of in vitro transcribed RNA. Nucl. Acids Res. 24: 977 â 978.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R. and Doudna, J.A. 1997. Establishing suitability of RNA preparations for crystallization. Determination of polydispersity. In Ribozyme Protocols ( P.C. Turner, ed. )pp. 371 â 378. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R. and Doudna, J.A. 1999. RNA folds: Insights from recent crystal structures. Annu. Rev. Biophys. Biomol. Struct. 28: 57 â 73.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R. and Doudna, J.A. 2000. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNAâ binding protein U1A as a crystallization module. J. Mol. Biol. 295: 541 â 556.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R., Zhou, K., and Doudna, J.A. 1998a. Crystal structure of a hepatitis delta virus ribozyme. Nature. 395: 567 â 574.
dc.identifier.citedreferenceFerréâ D’Amaré, A.R., Zhou, K., and Doudna, J.A. 1998b. A general module for RNA crystallization. J. Mol. Biol. 279: 621 â 631.
dc.identifier.citedreferenceGolden, B.L., Podell, E.R., Gooding, A.R., and Cech, T.R. 1997. Crystals by design: A strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J. Mol. Biol. 270: 711 â 723.
dc.identifier.citedreferenceGolden, B.L., Gooding, A.R., Podell, E.R., and Cech, T.R. 1998. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282: 259 â 264.
dc.identifier.citedreferenceHarp, J.M., Timm, D.E., and Bunick, G.J. 1998. Macromolecular crystal annealing: Overcoming increased mosaicity associated with cryocrystallography. Acta Cryatallogr. Sect. D Biol. Crystallogr. 54: 622 â 628.
dc.identifier.citedreferenceHolbrook, S.R. and Kim, S.â H. 1985. Crystallization and heavyâ atom derivatives of polynucleotides. Methods Enzymol. 114: 167 â 176.
dc.identifier.citedreferenceHolbrook, S.R. and Kim, S.â H. 1997. RNA crystallography. Biopolymers 44: 3 â 21.
dc.identifier.citedreferenceHolbrook, S.R., Cheong, C., Tinoco, I.J., and Kim, S.â H. 1991. Crystal structure of an RNA double helix incorporating a track of nonâ Watsonâ Crick base pairs. Nature 353: 579 â 581.
dc.identifier.citedreferenceIppolito, J.A. and Steitz, T.A. 1998. A 1.3 Ã resolution crystal structure of the HIVâ 1 transâ activation response region RNA stem reveals a metal ionâ dependent bulge conformation. Proc. Natl. Acad. Sci U.S.A. 95: 9819 â 9824.
dc.identifier.citedreferenceJancarik, J. and Kim, S.â H. 1991. Sparse matrix sampling: A screening method for crystallization of proteins. J. Appl. Crystallogr. 24: 409 â 411.
dc.identifier.citedreferenceKim, J.L. 1992. Xâ ray crystallographic studies of a ribonuclease resistant fragment of E. coli 5S RNA. Ph.D. Dissertation, Yale University, New Haven, Conn.
dc.identifier.citedreferenceKim, S.â H., Quigley, G., Suddath, F.L., Rich, A. 1971. Highâ resolution Xâ ray diffraction patterns of crystalline transfer RNA that show helical regions. Proc. Natl. Acad. Sci. U.S.A. 68: 841 â 845.
dc.identifier.citedreferenceKim, S.â H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, A.H.J., Seeman, N.C., and Rich, A. 1974. Threeâ dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435 â 440.
dc.identifier.citedreferenceLadner, J.E., Finch, J.T., Klug, A., and Clark, B.F.C. 1972. Highâ resolution Xâ ray diffraction studies on a pure species of transfer RNA. J. Mol. Biol. 72: 99 â 101.
dc.identifier.citedreferenceLapham, J. and Crothers, D.M. 1996. RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA 2: 289 â 296.
dc.identifier.citedreferenceMatthews, B.W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491 â 497.
dc.identifier.citedreferenceMatthews, B.W. 1985. Determination of protein molecular weight, hydration and packing from crystal densities. Methods Enzymol. 114: 176 â 187.
dc.identifier.citedreferenceMcPherson, A. 1990. Current approaches to macromolecular crystallization. Eur. J. Biochem. 189: 1 â 23.
dc.identifier.citedreferenceMcPherson, A. 1999. Crystallization of Biological Macromolecules. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
dc.identifier.citedreferenceOubridge, C., Ito, N., Evans, P.R., Teo, C.â H., and Nagai, K. 1994. Crystal structure at 1.92 Ã resolution of the RNAâ binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372: 432 â 438.
dc.identifier.citedreferenceOubridge, C., Ito, N., Teo, C.â H., Fearnley, I., and Nagai, K. 1995. Crystallization of RNAâ protein complexes II. The application of protein engineering for crystallization of the U1A proteinâ RNA complex. J. Mol. Biol. 249: 409 â 423.
dc.identifier.citedreferencePerbandt, M., Nolte, A., Lorenz, S., Bald, R., Betzel, C., and Erdmann, V.A. 1998. Crystal structure of domain E of Thermus flavus 5S RNA: A helical RNA structure including a hairpin loop. FEBS Lett. 429: 211 â 215.
dc.identifier.citedreferencePetsko, G.A. 1985. Preparation of isomorphous heavy atom derivatives. Methods Enzymol. 114: 147 â 156.
dc.identifier.citedreferencePley, H.W., Lindes, D.S., DeLucaâ Flaherty, C., and McKay, D.B. 1993. Crystals of a hammerhead ribozyme. J. Biol. Chem. 268: 19656 â 19658.
dc.identifier.citedreferencePley, H.W., Flaherty, K.M., and McKay, D.B. 1994a. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372: 111 â 113.
dc.identifier.citedreferencePley, H.W., Flaherty, K.M., and McKay, D.B. 1994b. Threeâ dimensional structure of a hammerhead ribozyme. Nature 372: 68 â 74.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.