Show simple item record

Modification of the 5′ Terminus of Oligodeoxyribonucleotides for Conjugation with Ligands

dc.contributor.authorAsseline, Ulysse
dc.contributor.authorThuong, Nguyen T.
dc.date.accessioned2020-01-13T15:12:53Z
dc.date.available2020-01-13T15:12:53Z
dc.date.issued2001-07
dc.identifier.citationAsseline, Ulysse; Thuong, Nguyen T. (2001). "Modification of the 5′ Terminus of Oligodeoxyribonucleotides for Conjugation with Ligands." Current Protocols in Nucleic Acid Chemistry 5(1): 4.9.1-4.9.28.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152903
dc.description.abstractLigands can be introduced at the 5′ terminus of an oligonucleotide by adding a linker to the ligand and modifying the 5′ terminus of the oligonucleotide. These are then reacted to give the ligand‐oligonucleotide conjugate. This unit describes the addition of carboxylated and aminoalkylated linkers, and phosphorothioate, phosphate, and masked thiol groups to the 5′ terminus of an oligonucleotide. The addition of linkers to ligands and the final reaction that produces the ligand‐conjugated oligonucleotide are described elsewhere in the series. This approach is particularly useful when there is a limited amount of ligand available, when the ligand is sensitive to chemical conditions required for oligonucleotide deprotection, or when the ligand is weakly soluble in solvents required for phosphoramidite‐ or H‐phosphonate‐mediated oligonucleotide synthesis.
dc.publisherWiley Periodicals, Inc.
dc.publisherIRL Press
dc.titleModification of the 5′ Terminus of Oligodeoxyribonucleotides for Conjugation with Ligands
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152903/1/cpnc0409.pdf
dc.identifier.doi10.1002/0471142700.nc0409s05
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceAubert, Y., Bourgerie, S., Meunier, L., Mayer, R., Roche, A.‐C., Monsigny, M., Thuong, N.T., and Asseline, U. 2000. Optimized synthesis of phosphorothioate oligodeoxyribonucleotides substituted with a 5′‐protected thiol function and a 3′‐amino group. Nucleic Acids Res. 28: 818 ‐ 825.
dc.identifier.citedreferenceBonfils, E. and Thuong, N.T. 1991. Solid‐phase synthesis of 5′‐3′‐bifunctional oligodeoxyribonucleotides bearing a masked thiol group at their 3′‐end. Tetrahedron Lett. 35: 3053 ‐ 3056.
dc.identifier.citedreferenceBurns, J.A., Butler, J.C., Moran, J., and Whitesides, G.M. 1991. Selective reduction of disulfides by tris(2‐carboxyethyl)phosphine. J. Org. Chem. 56: 2648 ‐ 2650.
dc.identifier.citedreferenceCarlsson, J., Drevin, H., and Axen, R. 1978. Protein‐thiolation and reversible protein‐protein conjugation. Biochem. J. 173: 723 ‐ 737.
dc.identifier.citedreferenceEckstein, F. 1983. Phosphorothioate analogues of nucleotides. Tools for investigation of biochemical processes. Angew. Chem. Int. Ed. Engl. 22: 423 ‐ 506.
dc.identifier.citedreferenceGottikh, M., Asseline, U., and Thuong, N.T. 1990. Synthesis of oligonucleotides containing a carboxyl group at either their 5′‐end or their 3′‐end and their subsequent derivatization by an intercalating agent. Tetrahedron Lett. 31: 6657 ‐ 6660.
dc.identifier.citedreferenceGrimm, G.N., Boutorine, A.S., and Hélène, C. 2000. Rapid routes of synthesis of oligonucleotide conjugates from non‐protected oligonucleotides and ligands possessing different nucleophilic or electrophilic functional groups. Nucleosides Nucleotides and Nucleic Acids 19: 1943 ‐ 1965.
dc.identifier.citedreferenceKuijpers, W.H. and Van Boeckel, C.A. 1993. A new strategy for the solid‐phase synthesis of 5′‐thiolated oligodeoxyribonucleotides. Tetrahedron 49: 10944 ‐ 10944.
dc.identifier.citedreferenceKurfürst, R., Roig, V., Chassignol, M., Asseline, U., and Thuong, N.T. 1993. Oligo‐α‐deoxyribonucleotides with a modified nucleic acid base and covalently linked to reactive agent. Tetrahedron 32: 6975 ‐ 6990.
dc.identifier.citedreferenceRaynaud, F., Asseline, U., Roig, V., and Thuong, N.T. 1996. Synthesis and characterization of O 6 ‐modified deoxyguanosine‐containing oligodeoxyribonucleotides for triple‐helix formation. Tetrahedron 52: 2047 ‐ 2064.
dc.identifier.citedreferenceThuong, N.T. and Asseline, U. 1991. Oligodeoxyribonucleotides attached to intercalators, photoreactive and cleavage agents. In Oligodeoxyribonucleotides and Analogues: A Practical Approach ( F. Eckstein, ed.) pp. 283 ‐ 308. IRL Press, Oxford.
dc.identifier.citedreferenceWachter, L., Jablonski, J.A., and Ramachandran, K.L. 1986. A simple and efficient procedure for the synthesis of 5′‐aminoalkyl oligonucleotides. Nucleic Acids Res. 14: 7985 ‐ 7994.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.