Show simple item record

Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)

dc.contributor.authorMortensen, Richard
dc.date.accessioned2020-01-13T15:13:06Z
dc.date.available2020-01-13T15:13:06Z
dc.date.issued2000-10
dc.identifier.citationMortensen, Richard (2000). "Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)." Current Protocols in Molecular Biology 52(1): 23.5.1-23.511.
dc.identifier.issn1934-3639
dc.identifier.issn1934-3647
dc.identifier.urihttps://hdl.handle.net/2027.42/152915
dc.description.abstractFormerly UNIT 9.16, this unit takes a more appropriate place in Chapter 23, and has been updated and revised for this publication. Gene targeting by homologous recombination allows the introduction of specific mutations into any cloned gene. In this unit, the gene of interest is inactivated by interrupting its coding sequence with a positive selectable marker (e.g., neo). Expression of neo is obtained by including the phosphoglycerate kinase (PGK) promoter in the construct. To enrich for clones in which the target gene has undergone homologous recombination over those in which random integration of the construct has occurred, a negative selectable marker, herpes simplex virus thymidine kinase (HSV‐TK), is included in the construct outside the region of homology to the target gene. Depending upon the target gene, it may be easier to assemble the construct by adding the neo and TK genes to the cloned target gene or by adding two fragments of the target gene to a plasmid containing the neo and TK genes.
dc.publisherIRL Press
dc.publisherWiley Periodicals, Inc.
dc.titleProduction of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152915/1/cpmb2305.pdf
dc.identifier.doi10.1002/0471142727.mb2305s52
dc.identifier.sourceCurrent Protocols in Molecular Biology
dc.identifier.citedreferenceBradley, A., Evans, M., Kaufman, M.H., and Robertson, E. 1984. Formation of germ‐line chimaeras from embryo‐derived teratocarcinoma cell lines. Nature 309: 255 ‐ 256.
dc.identifier.citedreferenceCapecchi, M.R. 1989. Altering the genome by homologous recombination. Science 244: 1288 ‐ 1292.
dc.identifier.citedreferenceCheng, S., Fockler, C., Barnes, W., and Higuchi, R. 1994. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. U.S.A. 91: 5695 ‐ 5699.
dc.identifier.citedreferenceDeng, C. and Capecchi, M.R. 1992. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12: 3365 ‐ 3371.
dc.identifier.citedreferenceEvans, M.J. and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154 ‐ 156.
dc.identifier.citedreferenceFolger, K.R., Wong, E.A., Wahl, G., and Capecchi, M.R. 1982. Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2: 1372 ‐ 1387.
dc.identifier.citedreferenceHasty, P., Rivera, P.J., and Bradley, A. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11: 5586 ‐ 5591.
dc.identifier.citedreferenceKoller, B.H., Kim, H.‐S., Latour, A.M., Brigman, K., Boucher, R.C. Jr., Scambler, P., Wainwright, B., and Smithies, O. 1991. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 88: 10730 ‐ 10734.
dc.identifier.citedreferenceMartin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Nat. Acad. Sci. U.S.A. 78: 7634 ‐ 8.
dc.identifier.citedreferenceMilstone, D.S., Bradwin, G., and Mortensen, R.M. 1999. Simultaneous Cre catalyzed recombination of two alleles to restore neomycin sensitivity and facilitate homozygous mutations. Nuc. Acids Res. 27: e10.
dc.identifier.citedreferenceRobertson, E.J. 1987. Embryo derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach ( E.J. Robertson, ed.) pp. 71 ‐ 112. IRL Press, Oxford and New York.
dc.identifier.citedreferenceSmithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A., and Kucherlapati, R.S. 1985. Insertion of DNA sequences into the human chromosomal beta‐globin locus by homologous recombination. Nature 317: 230 ‐ 234.
dc.identifier.citedreferenceteRiele, H., Maandag, E.R., and Berns, A. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Nat. Acad. Sci. U.S.A. 89: 5128 ‐ 5132.
dc.identifier.citedreferenceThomas, K.R., Deng, C., and Capecchi, M.R. 1992. High‐fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12: 2919 ‐ 2923.
dc.identifier.citedreferenceWong, E.A. and Capecchi, M.R. 1987. Homologous recombination between coinjected DNA sequences peaks in early to mid‐S phase. Mol. Cell. Biol. 7: 2294 ‐ 2295.
dc.identifier.citedreferenceYenofsky, R.L., Fine, M., and Pellow, J.W. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Nat. Acad. Sci. U.S.A. 87: 3435 ‐ 3439.
dc.identifier.citedreferenceZheng, H. and Wilson, J.H. 1990. Gene targeting in normal and amplified cell lines. Nature 344: 170 ‐ 173.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.