Show simple item record

A bloodâ based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial

dc.contributor.authorBowman, Gene L.
dc.contributor.authorDodge, Hiroko H.
dc.contributor.authorGuyonnet, Sophie
dc.contributor.authorZhou, Nina
dc.contributor.authorDonohue, Juliana
dc.contributor.authorBichsel, Aline
dc.contributor.authorSchmitt, Jeroen
dc.contributor.authorHooper, Claudie
dc.contributor.authorBartfai, Tamas
dc.contributor.authorAndrieu, Sandrine
dc.contributor.authorVellas, Bruno
dc.contributor.authorVellas, Bruno
dc.contributor.authorGuyonnet, Sophie
dc.contributor.authorCarrié, Isabelle
dc.contributor.authorBrigitte, Lauréane
dc.contributor.authorFaisant, Catherine
dc.contributor.authorLala, Françoise
dc.contributor.authorDelrieu, Julien
dc.contributor.authorVillars, Hélène
dc.contributor.authorCombrouze, Emeline
dc.contributor.authorBadufle, Carole
dc.contributor.authorZueras, Audrey
dc.contributor.authorAndrieu, Sandrine
dc.contributor.authorCantet, Christelle
dc.contributor.authorMorin, Christophe
dc.contributor.authorVan Kan, Gabor Abellan
dc.contributor.authorDupuy, Charlotte
dc.contributor.authorRolland, Yves
dc.contributor.authorCaillaud, Céline
dc.contributor.authorOusset, Pierre‐jean
dc.contributor.authorLala, Françoise
dc.date.accessioned2020-01-13T15:13:32Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019
dc.identifier.citationBowman, Gene L.; Dodge, Hiroko H.; Guyonnet, Sophie; Zhou, Nina; Donohue, Juliana; Bichsel, Aline; Schmitt, Jeroen; Hooper, Claudie; Bartfai, Tamas; Andrieu, Sandrine; Vellas, Bruno; Vellas, Bruno; Guyonnet, Sophie; Carrié, Isabelle ; Brigitte, Lauréane ; Faisant, Catherine; Lala, Françoise ; Delrieu, Julien; Villars, Hélène ; Combrouze, Emeline; Badufle, Carole; Zueras, Audrey; Andrieu, Sandrine; Cantet, Christelle; Morin, Christophe; Van Kan, Gabor Abellan; Dupuy, Charlotte; Rolland, Yves; Caillaud, Céline ; Ousset, Pierre‐jean ; Lala, Françoise (2019). "A bloodâ based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial." Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5(C): 953-963.
dc.identifier.issn2352-8737
dc.identifier.issn2352-8737
dc.identifier.urihttps://hdl.handle.net/2027.42/152935
dc.description.abstractIntroductionMultinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a bloodâ based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3â years.MethodsThe NRI included erythrocyte nâ 3 polyunsaturated fatty acids (nâ 3 PUFA 22:6nâ 3 and 20:5nâ 3), serum 25â hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0â 3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixedâ effects models.ResultsEighty percent had at lease one nutritional risk factor for cognitive decline (NRI â ¥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (β = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRIâ 1: β = â 0.04 SU/y, P = .03; NRIâ 2: β = â 0.08 SU/y, P < .0001; and NRIâ 3: β = â 0.11 SU/y, P = .0008).DiscussionIdentifying and addressing these wellâ established nutritional risk factors may reduce ageâ related cognitive decline in older adults; an observation that warrants further study.Highlightsâ ¢Multiâ nutrient approaches may produce more robust effects through interactive propertiesâ ¢Nutritional risk index can objectively quantify nutritionâ related cognitive changesâ ¢Optimum nutritional status associated with cognitive enhancement over 3â yearsâ ¢Suboptimum nutritional status associated with cognitive decline over 3â yearsâ ¢Optimizing this nutritional risk index may promote cognitive health in older adults
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Academies Press (US)
dc.subject.otherElderly
dc.subject.otherCognitive decline
dc.subject.otherVitamin D
dc.subject.otherNutrient biomarkers
dc.subject.otherMetabolomics
dc.subject.otherBiomarkers of diet quality
dc.subject.otherOmegaâ 3 fatty acids
dc.subject.otherDHA
dc.subject.otherEPA
dc.subject.otherHomocysteine
dc.subject.otherAging
dc.titleA bloodâ based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152935/1/trc2jtrci201911004.pdf
dc.identifier.doi10.1016/j.trci.2019.11.004
dc.identifier.sourceAlzheimer’s & Dementia: Translational Research & Clinical Interventions
dc.identifier.citedreferenceA.M. Goodwill, C. Szoeke. A systematic review and metaâ analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc. 65: 2017; 2161 â 2168
dc.identifier.citedreferenceG.L. Bowman, L.C. Silbert, D. Howieson, H.H. Dodge, M.G. Traber, B. Frei, et al. Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology. 78: 2012; 241 â 249
dc.identifier.citedreferenceC. Amadieu, S. Lefevreâ Arbogast, C. Delcourt, J.F. Dartigues, C. Helmer, C. Feart, et al. Nutrient biomarker patterns and longâ term risk of dementia in older adults. Alzheimers Dement. 13: 2017; 1125 â 1132
dc.identifier.citedreferenceC.E. Zwilling, T. Talukdar, M.K. Zamroziewicz, A.K. Barbey. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage. 188: 2019; 239 â 251
dc.identifier.citedreferenceG.L. Bowman, L.C. Silbert, H.H. Dodge, D. Lahna, K. Hagen, C.F. Murchison, et al. Randomized trial of marine nâ 3 polyunsaturated fatty acids for the prevention of cerebral small vessel disease and inflammation in aging (PUFA Trial): rationale, design and baseline results. Nutrients. 11: 2019, 735
dc.identifier.citedreferenceM. Lehmann, B. Regland, K. Blennow, C.G. Gottfries. Vitamin B12â B6â folate treatment improves bloodâ brain barrier function in patients with hyperhomocysteinaemia and mild cognitive impairment. Dement Geriatr Cogn Disord. 16: 2003; 145 â 150
dc.identifier.citedreferenceG.L. Bowman, L. Dayon, R. Kirkland, J. Wojcik, G. Peyratout, I.C. Severin, et al. Bloodâ brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 14: 2018; 1640 â 1650
dc.identifier.citedreferenceL. Dayon, S.P. Guiraud, J. Corthesy, L. Da Silva, E. Migliavacca, D. Tautvydaite, et al. Oneâ carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther. 9: 2017; 43
dc.identifier.citedreferenceR.G. Smith, E. Hannon, P.L. De Jager, L. Chibnik, S.J. Lott, D. Condliffe, et al. Elevated DNA methylation across a 48â kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement. 14: 2018; 1580 â 1588
dc.identifier.citedreferenceT.L. Briones, H. Darwish. Vitamin D mitigates ageâ related cognitive decline through the modulation of proâ inflammatory state and decrease in amyloid burden. J Neuroinflammation. 9: 2012; 244
dc.identifier.citedreferenceM.F. Nissou, A. Guttin, C. Zenga, F. Berger, J.P. Issartel, D. Wion. Additional clues for a protective role of vitamin D in neurodegenerative diseases: 1,25â dihydroxyvitamin D3 triggers an antiâ inflammatory response in brain pericytes. J Alzheimers Dis. 42: 2014; 789 â 799
dc.identifier.citedreferenceY.N. Huang, Y.J. Ho, C.C. Lai, C.T. Chiu, J.Y. Wang. 1,25â Dihydroxyvitamin D3 attenuates endotoxinâ induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuronâ glia cultures. J Neuroinflammation. 12: 2015; 147
dc.identifier.citedreferenceY.X. Guo, L.Y. He, M. Zhang, F. Wang, F. Liu, W.X. Peng. 1,25â Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Abeta1â 40 brainâ toâ blood efflux and peripheral uptake transport. Neuroscience. 322: 2016; 28 â 38
dc.identifier.citedreferenceY. Zhao, D. Li, J. Zhao, J. Song, Y. Zhao. The role of the lowâ density lipoprotein receptorâ related protein 1 (LRPâ 1) in regulating bloodâ brain barrier integrity. Rev Neurosci. 27: 2016; 623 â 634
dc.identifier.citedreferenceM. Morello, V. Landel, E. Lacassagne, K. Baranger, C. Annweiler, F. Feron, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol. 55: 2018; 6463 â 6479
dc.identifier.citedreferenceB. Vellas, I. Carrie, S. Gilletteâ Guyonnet, J. Touchon, T. Dantoine, J.F. Dartigues, et al. MAPT study: a multidomain approach for preventing Alzheimer’s disease: design and baseline data. J Prev Alzheimers Dis. 1: 2014; 13 â 22
dc.identifier.citedreferenceL. Rouch, P. Cestac, C. Cool, C. Helmer, J.F. Dartigues, C. Berr, et al. Effectiveness of a standardized and specific followâ up in memory centers in patients with Alzheimer’s disease. Curr Alzheimer Res. 14: 2017; 255 â 267
dc.identifier.citedreferenceS. Gilletteâ Guyonnet, S. Andrieu, T. Dantoine, J.F. Dartigues, J. Touchon, B. Vellas, et al. Commentary on â A roadmap for the prevention of dementia II. Leon Thal Symposium 2008.â The Multidomain Alzheimer Preventive Trial (MAPT): a new approach to the prevention of Alzheimer’s disease. Alzheimers Dement. 5: 2009; 114 â 121
dc.identifier.citedreferenceE. Grober, H. Buschke, H. Crystal, S. Bang, R. Dresner. Screening for dementia by memory testing. Neurology. 38: 1988; 900 â 903
dc.identifier.citedreferenceD. Wechsler. Wechsler Adult Intelligence Scaleâ Revised. 1981; Psychological Corp: New York
dc.identifier.citedreferenceD. Cardebat, B. Doyon, M. Puel, P. Goulet, Y. Joanette. Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg. 90: 1990; 207 â 217
dc.identifier.citedreferenceP. Legrand, B. Schmitt, J. Mourot, D. Catheline, G. Chesneau, M. Mireaux, et al. The consumption of food products from linseedâ fed animals maintains erythrocyte omegaâ 3 fatty acids in obese humans. Lipids. 45: 2010; 11 â 19
dc.identifier.citedreferenceM.F. Holick. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 19: 2009; 73 â 78
dc.identifier.citedreferenceC. Dou, D. Xia, L. Zhang, X. Chen, P. Flores, A. Datta, et al. Development of a novel enzymatic cycling assay for total homocysteine. Clin Chem. 51: 2005; 1987 â 1989
dc.identifier.citedreferenceG.L. Bowman, J. Shannon, E. Ho, M.G. Traber, B. Frei, B.S. Oken, et al. Reliability and validity of food frequency questionnaire and nutrient biomarkers in elders with and without mild cognitive impairment. Alzheimer Dis Assoc Disord. 25: 2011; 49 â 57
dc.identifier.citedreferenceG.L. Bowman, H.H. Dodge, N. Mattek, A.K. Barbey, L.C. Silbert, L. Shinto, et al. Plasma omegaâ 3 PUFA and white matter mediated executive decline in older adults. Front Aging Neurosci. 5: 2013; 92
dc.identifier.citedreferenceM.R. Flock, A.C. Skulasâ Ray, W.S. Harris, T.D. Etherton, J.A. Fleming, P.M. Krisâ Etherton. Determinants of erythrocyte omegaâ 3 fatty acid content in response to fish oil supplementation: a doseâ response randomized controlled trial. J Am Heart Assoc. 2: 2013; e000513
dc.identifier.citedreferenceM.R. Flock, W.S. Harris, P.M. Krisâ Etherton. Longâ chain omegaâ 3 fatty acids: time to establish a dietary reference intake. Nutr Rev. 71: 2013; 692 â 707
dc.identifier.citedreferenceA.C. Ross. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 14: 2011; 938 â 939
dc.identifier.citedreferenceJ.W. Miller, D.J. Harvey, L.A. Beckett, R. Green, S.T. Farias, B.R. Reed, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 72: 2015; 1295 â 1303
dc.identifier.citedreferenceX. Gao, M. Yao, M.A. McCrory, G. Ma, Y. Li, S.B. Roberts, et al. Dietary pattern is associated with homocysteine and B vitamin status in an urban Chinese population. J Nutr. 133: 2003; 3636 â 3642
dc.identifier.citedreferenceZ.S. Tan, W.S. Harris, A.S. Beiser, R. Au, J.J. Himali, S. Debette, et al. Red blood cell omegaâ 3 fatty acid levels and markers of accelerated brain aging. Neurology. 78: 2012; 658 â 664
dc.identifier.citedreferenceC. Hooper, P. De Souto Barreto, N. Coley, C. Cantet, M. Cesari, S. Andrieu, et al. Cognitive changes with omegaâ 3 polyunsaturated fatty acids in nonâ demented older adults with low omegaâ 3 index. J Nutr Health Aging. 21: 2017; 988 â 993
dc.identifier.citedreferenceA.C. Ross, J.E. Manson, S.A. Abrams, J.F. Aloia, P.M. Brannon, S.K. Clinton, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 96: 2011; 53 â 58
dc.identifier.citedreferenceS. Seshadri, A. Beiser, J. Selhub, P.F. Jacques, I.H. Rosenberg, R.B. D’Agostino, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 346: 2002; 476 â 483
dc.identifier.citedreferenceE. Kawakita, M. Hashimoto, O. Shido. Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience. 139: 2006; 991 â 997
dc.identifier.citedreferenceM. Hashimoto, S. Hossain, T. Shimada, O. Shido. Docosahexaenoic acidâ induced protective effect against impaired learning in amyloid betaâ infused rats is associated with increased synaptosomal membrane fluidity. Clin Exp Pharmacol Physiol. 33: 2006; 934 â 939
dc.identifier.citedreferenceQ.L. Ma, B. Teter, O.J. Ubeda, T. Morihara, D. Dhoot, M.D. Nyby, et al. Omegaâ 3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s disease (AD): relevance to AD prevention. J Neurosci. 27: 2007; 14299 â 14307
dc.identifier.citedreferenceG.P. Lim, F. Calon, T. Morihara, F. Yang, B. Teter, O. Ubeda, et al. A diet enriched with the omegaâ 3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci. 25: 2005; 3032 â 3040
dc.identifier.citedreferenceF. Calon, G.P. Lim, F. Yang, T. Morihara, B. Teter, O. Ubeda, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 43: 2004; 633 â 645
dc.identifier.citedreferenceT. Moriguchi, R.S. Greiner, N. Salem Jr.. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem. 75: 2000; 2563 â 2573
dc.identifier.citedreferenceY. Yang, N. Lu, D. Chen, L. Meng, Y. Zheng, R. Hui. Effects of nâ 3 PUFA supplementation on plasma soluble adhesion molecules: a metaâ analysis of randomized controlled trials. Am J Clin Nutr. 95: 2012; 972 â 980
dc.identifier.citedreferenceG.L. Bowman, L. Dayon, I. Severin, D. Tautvydaite, H. Henry, A. Oikonomidi, et al. A neuroinflammatory biomarker signature of bloodâ brain barrier impairment in older adults. Alzheimers Dement. 12: 2016; P670
dc.identifier.citedreferenceJ. Tanprasertsuk, E.S. Mohn, N.R. Matthan, A.H. Lichtenstein, K. Barger, R. Vishwanathan, et al. Serum carotenoids, tocopherols, total nâ 3 polyunsaturated fatty acids, and nâ 6/nâ 3 polyunsaturated fatty acid ratio reflect brain concentrations in a cohort of centenarians. J Gerontol A Biol Sci Med Sci. 74: 2019; 306 â 314
dc.identifier.citedreferenceA.M. Troen, M. Sheaâ Budgell, B. Shukittâ Hale, D.E. Smith, J. Selhub, I.H. Rosenberg. Bâ vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci U S A. 105: 2008; 12474 â 12479
dc.identifier.citedreferenceW.K. Lai, M.Y. Kan. Homocysteineâ induced endothelial dysfunction. Ann Nutr Metab. 67: 2015; 1 â 12
dc.identifier.citedreferenceM.L. Selley. A metabolic link between Sâ adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer’s disease. Neurobiol Aging. 28: 2007; 1834 â 1839
dc.identifier.citedreferenceS.M. Watkins, X. Zhu, S.H. Zeisel. Phosphatidylethanolamineâ Nâ methyltransferase activity and dietary choline regulate liverâ plasma lipid flux and essential fatty acid metabolism in mice. J Nutr. 133: 2003; 3386 â 3391
dc.identifier.citedreferenceJ. Yan, S.D. Ginsberg, B. Powers, M.J. Alldred, A. Saltzman, B.J. Strupp, et al. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine Nâ methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. FASEB J. 28: 2014; 4312 â 4323
dc.identifier.citedreferenceG. Astarita, K.M. Jung, N.C. Berchtold, V.Q. Nguyen, D.L. Gillen, E. Head, et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One. 5: 2010; e12538
dc.identifier.citedreferenceC. Feart, C. Helmer, B. Merle, F.R. Herrmann, C. Annweiler, J.F. Dartigues, et al. Associations of lower vitamin D concentrations with cognitive decline and longâ term risk of dementia and Alzheimer’s disease in older adults. Alzheimers Dement. 13: 2017; 1207 â 1216
dc.identifier.citedreferenceP.F. Jacques, I.H. Rosenberg, G. Rogers, J. Selhub, B.A. Bowman, E.W. Gunter, et al. Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 69: 1999; 482 â 489
dc.identifier.citedreferenceV. Ganji, M.R. Kafai. Population reference values for plasma total homocysteine concentrations in US adults after the fortification of cereals with folic acid. Am J Clin Nutr. 84: 2006; 989 â 994
dc.identifier.citedreferenceA.M. Goodwill, S. Campbell, S. Simpson Jr., M. Bisignano, C. Chiang, L. Dennerstein, et al. Vitamin D status is associated with executive function a decade later: data from the Women’s Healthy Ageing Project. Maturitas. 107: 2018; 56 â 62
dc.identifier.citedreferenceB. Heude, P. Ducimetiere, C. Berr, E.V.A. Study. Cognitive decline and fatty acid composition of erythrocyte membranesâ â the EVA Study. Am J Clin Nutr. 77: 2003; 803 â 808
dc.identifier.citedreferenceK.D. Stark, M.E. Van Elswyk, M.R. Higgins, C.A. Weatherford, N. Salem Jr.. Global survey of the omegaâ 3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res. 63: 2016; 132 â 152
dc.identifier.citedreferenceA.D. Smith, H. Refsum. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr. 36: 2016; 211 â 239
dc.identifier.citedreferenceR.C. Petersen, R.G. Thomas, M. Grundman, D. Bennett, R. Doody, S. Ferris, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 352: 2005; 2379 â 2388
dc.identifier.citedreferenceJ.H. Kang, N. Cook, J. Manson, J.E. Buring, F. Grodstein. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med. 166: 2006; 2462 â 2468
dc.identifier.citedreferenceJ.H. Kang, N. Cook, J. Manson, J.E. Buring, C.M. Albert, F. Grodstein. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr. 88: 2008; 1602 â 1610
dc.identifier.citedreferenceP.S. Aisen, L.S. Schneider, M. Sano, R. Diazâ Arrastia, C.H. van Dyck, M.F. Weiner, et al. Highâ dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 300: 2008; 1774 â 1783
dc.identifier.citedreferenceJ.F. Quinn, R. Raman, R.G. Thomas, K. Yurkoâ Mauro, E.B. Nelson, C. Van Dyck, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 304: 2010; 1903 â 1911
dc.identifier.citedreferenceJ. Durga, M.P. van Boxtel, E.G. Schouten, F.J. Kok, J. Jolles, M.B. Katan, et al. Effect of 3â year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 369: 2007; 208 â 216
dc.identifier.citedreferenceA.D. Smith, S.M. Smith, C.A. de Jager, P. Whitbread, C. Johnston, G. Agacinski, et al. Homocysteineâ lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 5: 2010; e12244
dc.identifier.citedreferenceJ.G. Walker, P.J. Batterham, A.J. Mackinnon, A.F. Jorm, I. Hickie, M. Fenech, et al. Oral folic acid and vitamin Bâ 12 supplementation to prevent cognitive decline in communityâ dwelling older adults with depressive symptomsâ â the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr. 95: 2012; 194 â 203
dc.identifier.citedreferenceA. Oulhaj, F. Jerneren, H. Refsum, A.D. Smith, C.A. de Jager. Omegaâ 3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis. 50: 2016; 547 â 557
dc.identifier.citedreferenceJ.E. Manson, N.R. Cook, I.M. Lee, W. Christen, S.S. Bassuk, S. Mora, et al. Marine nâ 3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 380: 2019; 23 â 32
dc.identifier.citedreferenceDiet and health: implications for reducing chronic disease risk. 1989; National Academies Press (US), Washington (DC); 1989
dc.identifier.citedreferenceR.F. Hurrell, S. Lynch, T. Bothwell, H. Cori, R. Glahn, E. Hertrampf, et al. Enhancing the absorption of fortification iron. A SUSTAIN Task Force report. Int J Vitam Nutr Res. 74: 2004; 387 â 401
dc.identifier.citedreferenceL.J. Appel, T.J. Moore, E. Obarzanek, W.M. Vollmer, L.P. Svetkey, F.M. Sacks, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 336: 1997; 1117 â 1124
dc.identifier.citedreferenceF. Jerneren, A.K. Elshorbagy, A. Oulhaj, S.M. Smith, H. Refsum, A.D. Smith. Brain atrophy in cognitively impaired elderly: the importance of longâ chain omegaâ 3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 102: 2015; 215 â 221
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.