Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions
dc.contributor.author | Blazer, Levi L. | |
dc.contributor.author | Roman, David L. | |
dc.contributor.author | Muxlow, Molly R. | |
dc.contributor.author | Neubig, Richard R. | |
dc.date.accessioned | 2020-01-13T15:13:48Z | |
dc.date.available | 2020-01-13T15:13:48Z | |
dc.date.issued | 2010-01 | |
dc.identifier.citation | Blazer, Levi L.; Roman, David L.; Muxlow, Molly R.; Neubig, Richard R. (2010). "Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions." Current Protocols in Cytometry 51(1): 13.11.1-13.11.15. | |
dc.identifier.issn | 1934-9297 | |
dc.identifier.issn | 1934-9300 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/152948 | |
dc.description.abstract | A method is described for the quantitative analysis of protein‐protein interactions using the flow cytometry protein interaction assay (FCPIA). This method is based upon immobilizing protein on a polystyrene bead, incubating these beads with a fluorescently labeled binding partner, and assessing the sample for bead‐associated fluorescence in a flow cytometer. This method can be used to calculate protein‐protein interaction affinities or to perform competition experiments with unlabeled binding partners or small molecules. Examples described in this protocol highlight the use of this assay in the quantification of the affinity of binding partners of the regulator of G‐protein signaling protein, RGS19, in either a saturation or a competition format. An adaptation of this method that is compatible for high‐throughput screening is also provided. Curr. Protoc. Cytom. 51:13.11.1‐13.11.15. © 2010 by John Wiley & Sons, Inc. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | protein‐protein interaction | |
dc.subject.other | high‐throughput screening | |
dc.subject.other | multiplexing | |
dc.subject.other | FCPIA | |
dc.subject.other | RGS | |
dc.subject.other | G protein | |
dc.title | Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152948/1/cpcy1311.pdf | |
dc.identifier.doi | 10.1002/0471142956.cy1311s51 | |
dc.identifier.source | Current Protocols in Cytometry | |
dc.identifier.citedreference | Shankaranarayanan, A., Thal, D.M., Tesmer, V.M., Roman, D.L., Neubig, R.R., Kozasa, T., and Tesmer, J.J. 2008. Assembly of high order G alpha q‐effector complexes with RGS proteins. J. Biol. Chem. 283: 34923 ‐ 34934. | |
dc.identifier.citedreference | Simons, P.C., Shi, M., Foutz, T., Cimino, D.F., Lewis, J., Buranda, T., Lim, W.K., Neubig, R.R., McIntire, W.E., Garrison, J., Prossnitz, E., and Sklar, L.A. 2003. Ligand‐receptor‐G‐protein molecular assemblies on beads for mechanistic studies and screening by flow cytometry. Mol. Pharmacol. 64: 1227 ‐ 1238. | |
dc.identifier.citedreference | Sklar, L.A., Edwards, B.S., Graves, S.W., Nolan, J.P., and Prossnitz, E.R. 2002. Flow cytometric analysis of ligand‐receptor interactions and molecular assemblies. Annu. Rev. Biophys. Biomol. Struct. 31: 97 ‐ 119. | |
dc.identifier.citedreference | Lee, E., Linder, M.E., and Gilman, A.G. 1994. Expression of G‐protein alpha subunits in Escherichia coli. Methods Enzymol. 237: 146 ‐ 164. | |
dc.identifier.citedreference | Neubig, R.R. and Siderovski, D.P. 2002. Regulators of G‐protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1: 187 ‐ 197. | |
dc.identifier.citedreference | Roman, D.L., Talbot, J.N., Roof, R.A., Sunahara, R.K., Traynor, J.R., and Neubig, R.R. 2007. Identification of small‐molecule inhibitors of RGS4 using a high‐throughput flow cytometry protein interaction assay. Mol. Pharmacol. 71: 169 ‐ 175. | |
dc.identifier.citedreference | Roman, D.L., Ota, S., and Neubig, R.R. 2009. Polyplexed Flow Cytometry Protein Interaction Assay: A Novel High‐Throughput Screening Paradigm for RGS Protein Inhibitors. J. Biomol. Screen. 14: 610 ‐ 619. | |
dc.identifier.citedreference | Roof, R.A., Jin, Y., Roman, D.L., Sunahara, R.K., Ishii, M., Mosberg, H.I., and Neubig, R.R. 2006. Mechanism of action and structural requirements of constrained peptide inhibitors of RGS proteins. Chem. Biol. Drug Des. 67: 266 ‐ 274. | |
dc.identifier.citedreference | Roof, R.A., Sobczyk‐Kojiro, K., Turbiak, A.J., Roman, D.L., Pogozheva, I.D., Blazer, L.L., Neubig, R.R., and Mosberg, H.I. 2008. Novel peptide ligands of RGS4 from a focused one‐bead, one‐compound library. Chem. Biol. Drug Des. 72: 111 ‐ 119. | |
dc.identifier.citedreference | Sarvazyan, N.A., Remmers, A.E., and Neubig, R.R. 1998. Determinants of gi1alpha and beta gamma binding. Measuring high affinity interactions in a lipid environment using flow cytometry. J. Biol. Chem. 273: 7934 ‐ 7940. | |
dc.identifier.citedreference | Shoichet, B.K. 2006. Screening in a spirit haunted world. Drug Discov. Today 11: 607 ‐ 615. | |
dc.identifier.citedreference | Berman, D.M., Kozasa, T., and Gilman, A.G. 1996. The GTPase‐activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271: 27209 ‐ 27212. | |
dc.identifier.citedreference | Blazer, L.L. and Neubig, R.R. 2008. Small molecule protein‐protein interaction inhibitors as CNS therapeutic agents: Current progress and future hurdles. Neuropsychopharmacology 34: 126 ‐ 141. | |
dc.identifier.citedreference | Buranda, T., Wu, Y., and Sklar, L.A. 2009. Chapter 11. Subsecond analyses of G‐protein coupled‐receptor ternary complex dynamics by rapid mix flow cytometry. Methods Enzymol. 461: 227 ‐ 247. | |
dc.identifier.citedreference | Feng, B.Y., Shelat, A., Doman, T.N., Guy, R.K., and Shoichet, B.K. 2005. High‐throughput assays for promiscuous inhibitors. Nat. Chem. Biol. 1: 146 ‐ 148. | |
dc.identifier.citedreference | Jeanneteau, F., Diaz, J., Sokoloff, P., and Griffon, N. 2004a. Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein‐coupled receptors. Mol. Biol. Cell 15: 696 ‐ 705. | |
dc.identifier.citedreference | Jeanneteau, F., Guillin, O., Diaz, J., Griffon, N., and Sokoloff, P. 2004b. GIPC recruits GAIP (RGS19) to attenuate dopamine D2 receptor signaling. Mol. Biol. Cell 15: 4926 ‐ 4937. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.