Show simple item record

Down‐regulation of E‐cadherin enhances prostate cancer chemoresistance via Notch signaling

dc.contributor.authorWang, Wenchu
dc.contributor.authorWang, Lihui
dc.contributor.authorMizokami, Atsushi
dc.contributor.authorShi, Junlin
dc.contributor.authorZou, Chunlin
dc.contributor.authorDai, Jinlu
dc.contributor.authorKeller, Evan T.
dc.contributor.authorLu, Yi
dc.contributor.authorZhang, Jian
dc.date.accessioned2020-01-13T15:14:00Z
dc.date.available2020-01-13T15:14:00Z
dc.date.issued2017-12
dc.identifier.citationWang, Wenchu; Wang, Lihui; Mizokami, Atsushi; Shi, Junlin; Zou, Chunlin; Dai, Jinlu; Keller, Evan T.; Lu, Yi; Zhang, Jian (2017). "Down‐regulation of E‐cadherin enhances prostate cancer chemoresistance via Notch signaling." Cancer Communications 36(1): 1-13.
dc.identifier.issn2523-3548
dc.identifier.issn2523-3548
dc.identifier.urihttps://hdl.handle.net/2027.42/152955
dc.description.abstractBackgroundThe chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease. New emerging evidence indicates that the epithelial‐to‐mesenchymal transition (EMT) may play pivotal roles in the development of chemoresistance and metastasis. As a hallmark of EMT, E‐cadherin is suggested to be a key marker in the development of chemoresistance. However, the molecular mechanisms underlying PCa chemoresistance remain unclear. The current study aimed to explore the association between EMT and chemoresistance in PCa as well as whether changing the expression of E‐cadherin would affect PCa chemoresistance.MethodsParental PC3 and DU145 cells and their chemoresistant PC3‐TxR and DU145‐TxR cells were analyzed. PC3‐TxR and DU145‐TxR cells were transfected with E‐cadherin‐expressing lentivirus to overexpress E‐cadherin; PC3 and DU145 cells were transfected with small interfering RNA to silence E‐cadherin. Changes of EMT phenotype‐related markers and signaling pathways were assessed by Western blotting and quantitative real‐time polymerase chain reaction. Tumor cell migration, invasion, and colony formation were then evaluated by wound healing, transwell, and colony formation assays, respectively. The drug sensitivity was evaluated using MTS assay.ResultsChemoresistant PC3‐TxR and DU145‐TxR cells exhibited an invasive and metastatic phenotype that associated with EMT, including the down‐regulation of E‐cadherin and up‐regulation of Vimentin, Snail, and N‐cadherin, comparing with that of parental PC3 and DU145 cells. When E‐cadherin was overexpressed in PC3‐TxR and DU145‐TxR cells, the expression of Vimentin and Claudin‐1 was down‐regulated, and tumor cell migration and invasion were inhibited. In particular, the sensitivity to paclitaxel was reactivated in E‐cadherin‐overexpressing PC3‐TxR and DU145‐TxR cells. When E‐cadherin expression was silenced in parental PC3 and DU145 cells, the expression of Vimentin and Snail was up‐regulated, and, particularly, the sensitivity to paclitaxel was decreased. Interestingly, Notch‐1 expression was up‐regulated in PC3‐TxR and DU145‐TxR cells, whereas the E‐cadherin expression was down‐regulated in these cells comparing with their parental cells. The use of γ‐secretase inhibitor, a Notch signaling pathway inhibitor, significantly increased the sensitivity of chemoresistant cells to paclitaxel.ConclusionThe down‐regulation of E‐cadherin enhances PCa chemoresistance via Notch signaling, and inhibiting the Notch signaling pathway may reverse PCa chemoresistance.
dc.publisherBioMed Central
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEpithelial‐to‐mesenchymal transition
dc.subject.otherChemoresistance
dc.subject.otherNotch signaling
dc.subject.otherProstate cancer
dc.subject.otherE‐cadherin
dc.titleDown‐regulation of E‐cadherin enhances prostate cancer chemoresistance via Notch signaling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHematology and Oncology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152955/1/cac2s408800170203x.pdf
dc.identifier.doi10.1186/s40880-017-0203-x
dc.identifier.sourceCancer Communications
dc.identifier.citedreferenceMeng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB. gamma‐Secretase inhibitors abrogate oxaliplatin‐induced activation of the Notch‐1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009; 69 2: 573 – 582. 10.1158/0008‐5472.CAN‐08‐2088 3242515
dc.identifier.citedreferenceBougen NM, Amiry N, Yuan Y, Kong XJ, Pandey V, Vidal LJ. Trefoil factor 1 suppression of E‐CADHERIN enhances prostate carcinoma cell invasiveness and metastasis. Cancer Lett. 2013; 332 1: 19 – 29. 10.1016/j.canlet.2012.12.012
dc.identifier.citedreferenceFan L, Wang H, Xia X, Rao Y, Ma X, Ma D. Loss of E‐cadherin promotes prostate cancer metastasis via upregulation of metastasis‐associated gene 1 expression. Oncol Lett. 2012; 4 6: 1225 – 1233 3506747
dc.identifier.citedreferenceLi F, Mahato RI. MicroRNAs and drug resistance in prostate cancers. Mol Pharm. 2014; 11 8: 2539 – 2552. 10.1021/mp500099g
dc.identifier.citedreferenceMarin‐Aguilera M, Codony‐Servat J, Reig O, Lozano JJ, Fernandez PL, Pereira MV. Epithelial‐to‐mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther. 2014; 13 5: 1270 – 1284. 10.1158/1535‐7163.MCT‐13‐0775
dc.identifier.citedreferenceDuran GE, Wang YC, Francisco EB, Rose JC, Martinez FJ, Coller J. Mechanisms of resistance to cabazitaxel. Mol Cancer Ther. 2015; 14 1: 193 – 201. 10.1158/1535‐7163.MCT‐14‐0155
dc.identifier.citedreferencePuhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H. Epithelial‐to‐mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR‐200c and miR‐205. Am J Pathol. 2012; 181 6: 2188 – 2201. 10.1016/j.ajpath.2012.08.011
dc.identifier.citedreferenceNi J, Cozzi P, Hao J, Beretov J, Chang L, Duan W. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol. 2013; 45 12: 2736 – 2748. 10.1016/j.biocel.2013.09.008
dc.identifier.citedreferenceZhao JH, Luo Y, Jiang YG, He DL, Wu CT. Knockdown of beta‐Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF‐1alpha. Cancer Invest. 2011; 29 6: 377 – 382. 10.3109/07357907.2010.512595
dc.identifier.citedreferenceLiu J, Chen Y, Shuai S, Ding D, Li R, Luo R. TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK‐3beta pathway. Tumour Biol. 2014; 35 9: 8969 – 8977. 10.1007/s13277‐014‐2077‐8
dc.identifier.citedreferenceWang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS. Acquisition of epithelial‐mesenchymal transition phenotype of gemcitabine‐resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009; 69 6: 2400 – 2407. 10.1158/0008‐5472.CAN‐08‐4312 2657919
dc.identifier.citedreferenceNoseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R. Notch activation results in phenotypic and functional changes consistent with endothelial‐to‐mesenchymal transformation. Circ Res. 2004; 94 7: 910 – 917. 10.1161/01.RES.0000124300.76171.C9
dc.identifier.citedreferenceNiimi H, Pardali K, Vanlandewijck M, Heldin CH, Moustakas A. Notch signaling is necessary for epithelial growth arrest by TGF‐beta. J Cell Biol. 2007; 176 5: 695 – 707. 10.1083/jcb.200612129 2064026
dc.identifier.citedreferenceBecker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Hofler H. Analysis of the E‐cadherin repressor Snail in primary human cancers. Cells Tissues Organs. 2007; 185 1–3: 204 – 212. 10.1159/000101321
dc.identifier.citedreferenceNiessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol. 2008; 182 2: 315 – 325. 10.1083/jcb.200710067 2483533
dc.identifier.citedreferenceMartz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza‐Penton A. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014; 7 357: ra121. 10.1126/scisignal.aaa1877 4353587
dc.identifier.citedreferenceEuhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986; 31 4: 229 – 234. 10.1002/jso.2930310402
dc.identifier.citedreferenceLu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE. Monocyte chemotactic protein‐1 (MCP‐1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate. 2006; 66 12: 1311 – 1318. 10.1002/pros.20464
dc.identifier.citedreferenceLu Y, Cai Z, Xiao G, Liu Y, Keller ET, Yao Z. CCR2 expression correlates with prostate cancer progression. J Cell Biochem. 2007; 101 3: 676 – 685. 10.1002/jcb.21220
dc.identifier.citedreferenceLu Y, Xiao G, Galson DL, Nishio Y, Mizokami A, Keller ET. PTHrP‐induced MCP‐1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer. 2007; 121 4: 724 – 733. 10.1002/ijc.22704
dc.identifier.citedreferenceWallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG. Tumor immunobiological differences in prostate cancer between African–American and European–American men. Cancer Res. 2008; 68 3: 927 – 936. 10.1158/0008‐5472.CAN‐07‐2608
dc.identifier.citedreferenceVogelzang NJ, Fizazi K, Burke JM, De Wit R, Bellmunt J, Hutson TE. Circulating tumor cells in a phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic castration‐resistant prostate cancer. Eur Urol. 2016.
dc.identifier.citedreferenceLu L, Tang D, Wang L, Huang LQ, Jiang GS, Xiao XY. Gambogic acid inhibits TNF‐alpha‐induced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF‐kappaB signaling pathways. Acta Pharmacol Sin. 2012; 33 4: 531 – 541. 10.1038/aps.2011.180 4003358
dc.identifier.citedreferenceYu Y, Wang L, Tang W, Zhang D, Shang T. RNA interference‐mediated knockdown of Notch‐1 inhibits migration and invasion, down‐regulates matrix metalloproteinases and suppresses NF‐kappaB signaling pathway in trophoblast cells. Acta Histochem. 2014; 116 5: 911 – 919. 10.1016/j.acthis.2014.03.003
dc.identifier.citedreferenceBlanco D, Vicent S, Elizegi E, Pino I, Fraga MF, Esteller M. Altered expression of adhesion molecules and epithelial‐mesenchymal transition in silica‐induced rat lung carcinogenesis. Lab Invest. 2004; 84 8: 999 – 1012. 10.1038/labinvest.3700129
dc.identifier.citedreferenceShou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001; 61 19: 7291 – 7297.
dc.identifier.citedreferenceBao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A. Notch‐1 induces epithelial‐mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011; 307 1: 26 – 36. 10.1016/j.canlet.2011.03.012 3104092
dc.identifier.citedreferenceVauclair S, Nicolas M, Barrandon Y, Radtke F. Notch1 is essential for postnatal hair follicle development and homeostasis. Dev Biol. 2005; 284 1: 184 – 193. 10.1016/j.ydbio.2005.05.018
dc.identifier.citedreferenceAndersson ER, Lendahl U. Therapeutic modulation of Notch signalling–are we there yet?. Nat Rev Drug Discov. 2014; 13 5: 357 – 378. 10.1038/nrd4252
dc.identifier.citedreferenceSiegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63 1: 11 – 30. 10.3322/caac.21166
dc.identifier.citedreferenceSiegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014; 64 1: 9 – 29. 10.3322/caac.21208
dc.identifier.citedreferenceChen W, Zheng R, Zeng H, Zhang S. The updated incidences and mortalities of major cancers in China, 2011. Chin J Cancer. 2015; 34 11: 502 – 507.
dc.identifier.citedreferenceGleave ME, Goldenberg SL, Chin JL, Warner J, Saad F, Klotz LH. Randomized comparative study of 3 versus 8‐month neoadjuvant hormonal therapy before radical prostatectomy: biochemical and pathological effects. J Urol. 2001; 166 2: 500 – 506. 10.1016/S0022‐5347(05)65971‐X
dc.identifier.citedreferenceShiota M, Song Y, Takeuchi A, Yokomizo A, Kashiwagi E, Kuroiwa K. Antioxidant therapy alleviates oxidative stress by androgen deprivation and prevents conversion from androgen dependent to castration resistant prostate cancer. J Urol. 2012; 187 2: 707 – 714. 10.1016/j.juro.2011.09.147
dc.identifier.citedreferenceGaztanaga M, Crook J. Androgen deprivation therapy: minimizing exposure and mitigating side effects. J Natl Compr Cancer Netw. 2012; 10 9: 1088 – 1095.
dc.identifier.citedreferenceRolfo C, Passiglia F, Castiglia M, Raez LE, Germonpre P, Gil‐Bazo I. ALK and crizotinib: after the honeymoon…what else? Resistance mechanisms and new therapies to overcome it. Transl Lung Cancer Res. 2014; 3 4: 250 – 261 4367701
dc.identifier.citedreferenceSzakacs G, Paterson JK, Ludwig JA, Booth‐Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006; 5 3: 219 – 234. 10.1038/nrd1984
dc.identifier.citedreferenceYang Y, Ma Y, Sheng J, Huang Y, Zhao Y, Fang W. A multicenter, retrospective epidemiologic survey of the clinical features and management of bone metastatic disease in China. Chin J Cancer. 2016; 35: 40. 10.1186/s40880‐016‐0102‐6 4845386
dc.identifier.citedreferenceNakamura M, Tokura Y. Epithelial‐mesenchymal transition in the skin. J Dermatol Sci. 2011; 61 1: 7 – 13. 10.1016/j.jdermsci.2010.11.015
dc.identifier.citedreferenceSanchez‐Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A. ZEB1 represses E‐cadherin and induces an EMT by recruiting the SWI/SNF chromatin‐remodeling protein BRG1. Oncogene. 2010; 29 24: 3490 – 3500. 10.1038/onc.2010.102
dc.identifier.citedreferenceDu C, Zhang C, Hassan S, Biswas MH, Balaji KC. Protein kinase D1 suppresses epithelial‐to‐mesenchymal transition through phosphorylation of snail. Cancer Res. 2010; 70 20: 7810 – 7819. 10.1158/0008‐5472.CAN‐09‐4481
dc.identifier.citedreferencePutzke AP, Ventura AP, Bailey AM, Akture C, Opoku‐Ansah J, Celiktas M. Metastatic progression of prostate cancer and e‐cadherin regulation by zeb1 and SRC family kinases. Am J Pathol. 2011; 179 1: 400 – 410. 10.1016/j.ajpath.2011.03.028 3123858
dc.identifier.citedreferenceVeveris‐Lowe TL, Lawrence MG, Collard RL, Bui L, Herington AC, Nicol DL. Kallikrein 4 (hK4) and prostate‐specific antigen (PSA) are associated with the loss of E‐cadherin and an epithelial‐mesenchymal transition (EMT)‐like effect in prostate cancer cells. Endocr Relat Cancer. 2005; 12 3: 631 – 643. 10.1677/erc.1.00958
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.