Show simple item record

Amplification Using CHO Cell Expression Vectors

dc.contributor.authorKingston, Robert E.
dc.contributor.authorKaufman, Randal J.
dc.contributor.authorBebbington, C.R.
dc.contributor.authorRolfe, M.R.
dc.date.accessioned2020-01-13T15:14:09Z
dc.date.available2020-01-13T15:14:09Z
dc.date.issued2002-10
dc.identifier.citationKingston, Robert E.; Kaufman, Randal J.; Bebbington, C.R.; Rolfe, M.R. (2002). "Amplification Using CHO Cell Expression Vectors." Current Protocols in Molecular Biology 60(1): 16.23.1-16.23.13.
dc.identifier.issn1934-3639
dc.identifier.issn1934-3647
dc.identifier.urihttps://hdl.handle.net/2027.42/152963
dc.description.abstractThe ability to select for integration of plasmid DNA into the host chromosome allows the generation of stably transfected cell lines. With transfection of a selectable marker linked to a nonselectable target gene (or by cotransfection of the two unlinked genes), high‐level expression of the desired gene is obtained by selecting for amplification of the selectable marker. This unit presents two systems for gene amplification and expression. The first describes the dihydrofolate reductase (DHFR) selection system while the second is based on selection of the glutamine synthetase (GS) gene. The DHFR system is probably more widely used, and results in very high levels of amplification and expression; however, the DHFR amplification process is lengthy and may require several months to isolate and characterize a stable, amplified line. In contrast, the GS system typically requires only a single round of selection for amplification to achieve maximal expression levels.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.titleAmplification Using CHO Cell Expression Vectors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152963/1/cpmb1623.pdf
dc.identifier.doi10.1002/0471142727.mb1623s60
dc.identifier.sourceCurrent Protocols in Molecular Biology
dc.identifier.citedreferenceSanders, P.G. and Wilson, R.H. 1984. Amplification and cloning of the Chinese hamster glutamine synthetase gene. EMBO J. 3: 65 ‐ 71.
dc.identifier.citedreferenceAlt, F.W., Kellems, R.E., Bertino, J.R., and Schimke, R.T. 1978. Selective multiplication of dihydrofolate reductase genes in methotrexate‐resistant variants of cultured mammalian cells. J. Biol. Chem. 253: 1357 ‐ 1370.
dc.identifier.citedreferenceBebbington, C.R. and Hentschel, C.C.G. 1987. The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells. In DNA Cloning, Volume III ( D. Glover, ed.). Academic Press, San Diego.
dc.identifier.citedreferenceChristman, J.K., Gerber, M., Price, P.M., Flordellis, C., Edelman, J., and Acs, G. 1982. Amplification of expression of hepatitis B surface antigen in 3T3 cells cotransfected with a dominant‐acting gene and cloned viral DNA. Proc. Natl. Acad. Sci. U.S.A. 79: 1815 ‐ 1819.
dc.identifier.citedreferenceCockett, M.I., Bebbington, C.R., and Yarranton, G.T. 1990. High‐level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/Technology 8: 662 ‐ 667.
dc.identifier.citedreferenceDavis, S.J., Ward, H.A., Puklavec, M., Willis, A.C., Williams, A.F., and Barclay, A.N. 1990. High‐level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. 265: 10410 ‐ 10418.
dc.identifier.citedreferenceHarfst, E., Johnstone, A.P., Gout, I., Taylor, A.H., Waterfield, M.D., and Nussey, S.S. 1992. The use of amplifiable high‐expression vector pEE14 to study the interactions of autoantibodies with recombinant human thyro trophin receptor. Mol. Cell Endocrinol. 83: 117 ‐ 123.
dc.identifier.citedreferenceHayward, B.E., Hussain, A., Wilson, R.H., Lyons, A., Woodcock, V., McIntosh, B., and Harris, T.J.R. 1986. The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucl. Acids Res. 14: 999 ‐ 1008.
dc.identifier.citedreferenceKaufman, R.J. 1989. Selection and coamplification. Meth. Enzymol. 185: 537 ‐ 566.
dc.identifier.citedreferenceKaufman, R.J. 1990. Strategies for expressing high‐level expression in mammalian cells. Technique 2: 221 ‐ 236.
dc.identifier.citedreferenceKaufman, R.J. and Sharp, P.A. 1982a. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J. Mol. Biol. 159: 601 ‐ 621.
dc.identifier.citedreferenceKaufman, R.J. and Sharp, P.A. 1982b. Construction of a modular dihydrofolate reductase cDNA gene: Analysis of signals utilized for efficient expression. Mol. Cell. Biol. 2: 1304 ‐ 1319.
dc.identifier.citedreferenceKaufman, R., Davies, M., Wasley, L., and Michnik, D. 1991. Improved vectors for stable expression of foreign genes in mammalian cells by use of internal ribosomal entry site from EMC virus. Nucl. Acids Res. 19: 4485 ‐ 4490.
dc.identifier.citedreferenceKingston, R.E., Kaufman, R.J., and Sharp, P.A. 1984. Regulation of transcription of the adenovirus EII promoter by EIa gene products: Absence of sequence specificity. Mol. Cell. Biol. 4: 1970 ‐ 1977.
dc.identifier.citedreferenceRingold, G., Dieckman, B., and Lee, F. 1981. Coexpression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells. J. Mol. Appl. Genet. 1: 165 ‐ 175.
dc.identifier.citedreferenceCockett et al., 1990. See above.
dc.identifier.citedreferenceStephens, P.E. and Cockett, M.I. 1989. The construction of a highly efficient and versatile set of mammalian expression vectors. Nucl. Acids Res. 17: 7110.
dc.identifier.citedreferenceUrlaub, G. and Chasin, L.A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. U.S.A. 77: 4216 ‐ 4220.
dc.identifier.citedreferenceUrlaub, G., Kas, E., Carothers, A.M., and Chasin, L.A. 1983. Deletion of the diploid dihydrofolate locus from cultured mammalian cells. Cell 33: 405 ‐ 412.
dc.identifier.citedreferenceWigler, M., Silverstein, S., Lee, L., Pellicer, A., Cheng, Y., and Axel, R. 1977. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11: 223 ‐ 232.
dc.identifier.citedreferenceWurm, F.W., Gwinn, K.A., and Kingston, R.E. 1986. Inducible overproduction of the mouse c‐myc gene in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 83: 5414 ‐ 5418.
dc.identifier.citedreferenceKaufman et al., 1991. See above.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.