Show simple item record

GATAâ 3 in Tâ cell lymphoproliferative disorders

dc.contributor.authorMurga‐zamalloa, Carlos
dc.contributor.authorWilcox, Ryan A.
dc.date.accessioned2020-01-13T15:14:19Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:14:19Z
dc.date.issued2020-01
dc.identifier.citationMurga‐zamalloa, Carlos ; Wilcox, Ryan A. (2020). "GATAâ 3 in Tâ cell lymphoproliferative disorders." IUBMB Life 72(1): 170-177.
dc.identifier.issn1521-6543
dc.identifier.issn1521-6551
dc.identifier.urihttps://hdl.handle.net/2027.42/152971
dc.description.abstractGATAâ 3 regulates the differentiation, proliferation, survival, and function of peripheral T cells and their thymic progenitors. Recent findings, reviewed here, not only implicate GATAâ 3 in the pathogenesis of molecularly, genetically, and clinically distinct Tâ cell lymphoproliferative disorders, but also have significant diagnostic, prognostic, and therapeutic implications.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherPTCL
dc.subject.otherCTCL
dc.subject.otherGATAâ 3
dc.subject.otherTâ ALL
dc.titleGATAâ 3 in Tâ cell lymphoproliferative disorders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152971/1/iub2130.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152971/2/iub2130_am.pdf
dc.identifier.doi10.1002/iub.2130
dc.identifier.sourceIUBMB Life
dc.identifier.citedreferenceFerrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002; 1: 75 â 87.
dc.identifier.citedreferenceWilcox RA. Mogamulizumab: 2 birds, 1 stone. Blood. 2015; 125: 1847 â 1848.
dc.identifier.citedreferenceBelver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016; 16: 494 â 507.
dc.identifier.citedreferenceHosoya T, Maillard I, Engel JD. From the cradle to the grave: Activities of GATAâ 3 throughout Tâ cell development and differentiation. Immunol Rev. 2010; 238: 110 â 125.
dc.identifier.citedreferenceDorfman DM, Morgan EA, Pelton A, Unitt C. Tâ cell transcription factor GATAâ 3 is an immunophenotypic marker of acute leukemias with Tâ cell differentiation. Hum Pathol. 2017; 65: 166 â 174.
dc.identifier.citedreferenceHosoya T, Kuroha T, Moriguchi T, et al. GATAâ 3 is required for early T lineage progenitor development. J Exp Med. 2009; 206: 2987 â 3000.
dc.identifier.citedreferenceNawijn MC, Ferreira R, Dingjan GM, et al. Enforced expression of GATAâ 3 during T cell development inhibits maturation of CD8 singleâ positive cells and induces thymic lymphoma in transgenic mice. J Immunol. 2001; 167: 715 â 723.
dc.identifier.citedreferenceCarson KR, Horwitz SM, Pinterâ Brown LC, et al. A prospective cohort study of patients with peripheral Tâ cell lymphoma in the United States. Cancer. 2017; 123: 1174 â 1183.
dc.identifier.citedreferenced’Amore F, Relander T, Lauritzsen GF, et al. Upâ front autologous stemâ cell transplantation in peripheral Tâ cell lymphoma: NLGâ Tâ 01. J Clin Oncol. 2012; 30: 3093 â 3099.
dc.identifier.citedreferenceKim YH, Bagot M, Pinterâ Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous Tâ cell lymphoma (MAVORIC): An international, openâ label, randomised, controlled phase 3 trial. Lancet Oncol. 2018; 19: 1192 â 1204.
dc.identifier.citedreferenceMurgaâ Zamalloa C, Polk A, Hanel W, et al. Poloâ likeâ kinase 1 (PLKâ 1) and câ myc inhibition with the dual kinaseâ bromodomain inhibitor volasertib in aggressive lymphomas. Oncotarget. 2017; 8: 114474 â 114480.
dc.identifier.citedreferenceMurgaâ Zamalloa C, Inamdar KV, Wilcox RA. The role of aurora a and poloâ like kinases in highâ risk lymphomas. Blood Adv. 2019; 3: 1778 â 1787.
dc.identifier.citedreferenceO’Connor OA, Ozcan M, Jacobsen ED, et al. Randomized phase III study of Alisertib or Investigator’s choice (selected single agent) in patients with relapsed or refractory peripheral Tâ cell lymphoma. J Clin Oncol. 2019; 37: 613 â 623.
dc.identifier.citedreferenceSingleton KL, Gosh M, Dandekar RD, et al. Itk controls the spatiotemporal organization of T cell activation. Sci Signal. 2011; 4: ra66.
dc.identifier.citedreferenceWang Y, Misumi I, Gu AD, et al. GATAâ 3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat Immunol. 2013; 14: 714 â 722.
dc.identifier.citedreferenceBoonstra PS, Polk A, Brown N, et al. A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral Tâ cell lymphomas. Am J Hematol. 2017; 92: 1287 â 1294.
dc.identifier.citedreferenceLujambio A, Akkari L, Simon J, et al. Nonâ cellâ autonomous tumor suppression by p53. Cell. 2013; 153: 449 â 460.
dc.identifier.citedreferenceWang X, Li J, Dong K, et al. Tumor suppressor miRâ 34a targets PDâ L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 2015; 27: 443 â 452.
dc.identifier.citedreferenceCortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miRâ 34. J Natl Cancer Inst. 2016; 108:1â 9.
dc.identifier.citedreferencePhillips T, Devata S, Wilcox RA. Challenges and opportunities for checkpoint blockade in Tâ cell lymphoproliferative disorders. J Immunother Cancer. 2016; 4: 95.
dc.identifier.citedreferenceParsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7â H1 expression and immunoresistance in glioma. Nat Med. 2007; 13: 84 â 88.
dc.identifier.citedreferenceTeras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016; 66: 443 â 459.
dc.identifier.citedreferenceLaurent C, Baron M, Amara N, et al. Impact of expert pathologic review of lymphoma diagnosis: Study of patients from the French Lymphopath Network. J Clin Oncol. 2017; 35: 2008 â 2017.
dc.identifier.citedreferenceVose J, Armitage J, Weisenburger D. International peripheral Tâ cell and natural killer/Tâ cell lymphoma study: Pathology findings and clinical outcomes. J Clin Oncol. 2008; 26: 4124 â 4130.
dc.identifier.citedreferenceMak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral Tâ cell lymphoma after first relapse or progression: Spectrum of disease and rare longâ term survivors. J Clin Oncol. 2013; 31: 1970 â 1976.
dc.identifier.citedreferenceBriski R, Feldman AL, Bailey NG, et al. The role of frontâ line anthracyclineâ containing chemotherapy regimens in peripheral Tâ cell lymphomas. Blood Cancer J. 2014; 4: e214.
dc.identifier.citedreferenceBriski R, Feldman AL, Bailey NG, et al. Survival in patients with limitedâ stage peripheral Tâ cell lymphomas. Leuk Lymphoma. 2015; 56: 1665 â 1670.
dc.identifier.citedreferenceZhang JY, Briski R, Devata S, et al. Survival following salvage therapy for primary refractory peripheral Tâ cell lymphomas (PTCL). Am J Hematol. 2018; 93: 394 â 400.
dc.identifier.citedreferenceSwerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127: 2375 â 2390.
dc.identifier.citedreferenceWilcox RA, Ansell SM, Lim MS, Zou W, Chen L. The B7 homologues and their receptors in hematologic malignancies. Eur J Haematol. 2012; 88: 465 â 475.
dc.identifier.citedreferenceDorfman DM, Brown JA, Shahsafaei A, Freeman GJ. Programmed deathâ 1 (PDâ 1) is a marker of germinal centerâ associated T cells and angioimmunoblastic Tâ cell lymphoma. Am J Surg Pathol. 2006; 30: 802 â 810.
dc.identifier.citedreferenceRoncador G, Garcia Verdesâ Montenegro JF, Tedoldi S, et al. Expression of two markers of germinal center T cells (SAP and PDâ 1) in angioimmunoblastic Tâ cell lymphoma. Haematologica. 2007; 92: 1059 â 1066.
dc.identifier.citedreferenceXerri L, Chetaille B, Serriari N, et al. Programmed death 1 is a marker of angioimmunoblastic Tâ cell lymphoma and Bâ cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008; 39: 1050 â 1058.
dc.identifier.citedreferenceHuang Y, Moreau A, Dupuis J, et al. Peripheral Tâ cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic Tâ cell lymphomas. Am J Surg Pathol. 2009; 33: 682 â 690.
dc.identifier.citedreferenceRodriguezâ Justo M, Attygalle AD, Munson P, Roncador G, Marafioti T, Piris MA. Angioimmunoblastic Tâ cell lymphoma with hyperplastic germinal centres: A neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular Tâ cell markers. Mod Pathol. 2009; 22: 753 â 761.
dc.identifier.citedreferenceYu H, Shahsafaei A, Dorfman DM. Germinalâ center Tâ helperâ cell markers PDâ 1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic Tâ cell lymphoma. Am J Clin Pathol. 2009; 131: 33 â 41.
dc.identifier.citedreferenceMarafioti T, Paterson JC, Ballabio E, et al. The inducible Tâ cell coâ stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cellâ derivation. Haematologica. 2010; 95: 432 â 439.
dc.identifier.citedreferenceBaseggio L, Traverseâ Glehen A, Berger F, et al. CD10 and ICOS expression by multiparametric flow cytometry in angioimmunoblastic Tâ cell lymphoma. Mod Pathol. 2011; 24: 993 â 1003.
dc.identifier.citedreferencede Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral Tâ cell lymphoma demonstrates a molecular link between angioimmunoblastic Tâ cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007; 109: 4952 â 4963.
dc.identifier.citedreferenceIqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral Tâ cell lymphoma. Blood. 2014; 123: 2915 â 2923.
dc.identifier.citedreferenceIqbal J, Wilcox R, Naushad H, et al. Genomic signatures in Tâ cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev. 2016; 30: 89 â 100.
dc.identifier.citedreferenceLunning MA, Vose JM. Angioimmunoblastic Tâ cell lymphoma: The manyâ faced lymphoma. Blood. 2017; 129: 1095 â 1102.
dc.identifier.citedreferenceWang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic Tâ cell lymphoma. Blood. 2015; 126: 1741 â 1752.
dc.identifier.citedreferenceQuivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011; 20: 25 â 38.
dc.identifier.citedreferenceGenovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and bloodâ cancer risk inferred from blood DNA sequence. N Engl J Med. 2014; 371: 2477 â 2487.
dc.identifier.citedreferenceShlush LI, Zandi S, Mitchell A, et al. Identification of preâ leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506: 328 â 333.
dc.identifier.citedreferenceSakataâ Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014; 46: 171 â 175.
dc.identifier.citedreferenceNguyen TB, Sakataâ Yanagimoto M, Asabe Y, et al. Identification of cellâ typeâ specific mutations in nodal Tâ cell lymphomas. Blood Cancer J. 2017; 7: e516.
dc.identifier.citedreferenceSchwartz FH, Cai Q, Fellmann E, et al. TET2 mutations in B cells of patients affected by angioimmunoblastic Tâ cell lymphoma. J Pathol. 2017; 242: 129 â 133.
dc.identifier.citedreferenceZhang Q, Zhao K, Shen Q, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress ILâ 6. Nature. 2015; 525: 389 â 393.
dc.identifier.citedreferenceScourzic L, Couronne L, Pedersen MT, et al. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia. 2016; 30: 1388 â 1398.
dc.identifier.citedreferenceKluk MJ, Ashworth T, Wang H, et al. Gauging NOTCH1 activation in cancer using immunohistochemistry. PLoS One. 2013; 8: e67306.
dc.identifier.citedreferenceWilcox RA. A threeâ signal model of Tâ cell lymphoma pathogenesis. Am J Hematol. 2016; 91: 113 â 122.
dc.identifier.citedreferenceTindemans I, Serafini N, Di Santo JP, Hendriks RW. GATAâ 3 function in innate and adaptive immunity. Immunity. 2014; 41: 191 â 206.
dc.identifier.citedreferenceWang T, Feldman AL, Wada DA, et al. GATAâ 3 expression identifies a highâ risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014; 123: 3007 â 3015.
dc.identifier.citedreferenceGeskin LJ, Viragova S, Stolz DB, Fuschiotti P. Interleukinâ 13 is overexpressed in cutaneous Tâ cell lymphoma cells and regulates their proliferation. Blood. 2015; 125: 2798 â 2805.
dc.identifier.citedreferenceWang T, Lu Y, Polk A, et al. Tâ cell receptor signaling activates an ITK/NFâ kappaB/GATAâ 3 axis in Tâ cell lymphomas facilitating resistance to chemotherapy. Clin Cancer Res. 2017; 23: 2506 â 2515.
dc.identifier.citedreferenceZhang W, Wang Z, Luo Y, Zhong D, Luo Y, Zhou D. GATA3 expression correlates with poor prognosis and tumorâ associated macrophage infiltration in peripheral T cell lymphoma. Oncotarget. 2016; 7: 65284 â 65294.
dc.identifier.citedreferenceWilcox RA, Feldman AL, Wada DA, et al. B7â H1 (PDâ L1, CD274) suppresses host immunity in Tâ cell lymphoproliferative disorders. Blood. 2009; 114: 2149 â 2158.
dc.identifier.citedreferenceWilcox RA, Wada DA, Ziesmer SC, et al. Monocytes promote tumor cell survival in Tâ cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood. 2009; 114: 2936 â 2944.
dc.identifier.citedreferenceDave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumorâ infiltrating immune cells. N Engl J Med. 2004; 351: 2159 â 2169.
dc.identifier.citedreferenceLenz G, Wright G, Dave SS, et al. Stromal gene signatures in largeâ Bâ cell lymphomas. N Engl J Med. 2008; 359: 2313 â 2323.
dc.identifier.citedreferenceSteidl C, Lee T, Shah SP, et al. Tumorâ associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010; 362: 875 â 885.
dc.identifier.citedreferencePixley FJ, Stanley ER. CSFâ 1 regulation of the wandering macrophage: Complexity in action. Trends Cell Biol. 2004; 14: 628 â 638.
dc.identifier.citedreferenceHume DA, MacDonald KP. Therapeutic applications of macrophage colonyâ stimulating factorâ 1 (CSFâ 1) and antagonists of CSFâ 1 receptor (CSFâ 1R) signaling. Blood. 2012; 119: 1810 â 1820.
dc.identifier.citedreferenceJenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011; 332: 1284 â 1288.
dc.identifier.citedreferenceZheng C, Yang Q, Cao J, et al. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis. 2016; 7: e2167.
dc.identifier.citedreferenceJacobsen EA, Helmers RA, Lee JJ, Lee NA. The expanding role(s) of eosinophils in health and disease. Blood. 2012; 120: 3882 â 3890.
dc.identifier.citedreferenceManso R, Bellas C, Martinâ Acosta P, et al. Câ MYC is related to GATA3 expression and associated with poor prognosis in nodal peripheral Tâ cell lymphomas. Haematologica. 2016; 101: e336.#x2013; e338.
dc.identifier.citedreferenceIqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral Tâ cell lymphoma and prognostication in angioimmunoblastic Tâ cell lymphoma. Blood. 2010; 115: 1026 â 1036.
dc.identifier.citedreferenceHeavican TB, Bouska A, Yu J, et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral Tâ cell lymphoma. Blood. 2019; 133: 1664 â 1676.
dc.identifier.citedreferenceFang D, Gurram Krishna R, Cui K, et al. Bcl11b, a novel GATA3â interacting protein, regulates Tâ helperâ 2â cell differentiation and function. J Immunol. 2017; 198 ( 223 ): 213.
dc.identifier.citedreferencede Leval L, Gaulard P. Cellular origin of Tâ cell lymphomas. Blood. 2014; 123: 2909 â 2910.
dc.identifier.citedreferenceWilcox RA. Cutaneous Tâ cell lymphoma: 2017 update on diagnosis, riskâ stratification, and management. Am J Hematol. 2017; 92: 1085 â 1102.
dc.identifier.citedreferenceHanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sezary syndrome. Am J Hematol. 2016; 91: E491 â E495.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.