Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation
dc.contributor.author | Mathieu, Emilie | |
dc.contributor.author | Tolbert, Audrey E. | |
dc.contributor.author | Koebke, Karl J. | |
dc.contributor.author | Tard, Cédric | |
dc.contributor.author | Iranzo, Olga | |
dc.contributor.author | Penner‐hahn, James E. | |
dc.contributor.author | Policar, Clotilde | |
dc.contributor.author | Pecoraro, Vincent | |
dc.date.accessioned | 2020-01-13T15:14:39Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2020-01-13T15:14:39Z | |
dc.date.issued | 2020-01-02 | |
dc.identifier.citation | Mathieu, Emilie; Tolbert, Audrey E.; Koebke, Karl J.; Tard, Cédric ; Iranzo, Olga; Penner‐hahn, James E. ; Policar, Clotilde; Pecoraro, Vincent (2020). "Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation." Chemistry â A European Journal 26(1): 249-258. | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.issn | 1521-3765 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/152985 | |
dc.description.abstract | Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redoxâ active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36â V versus the normal hydrogen electrode (NHE). Rationally designed proteins with wellâ defined threeâ dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copperâ binding scaffolds: H3 (His3), H4 (His4), H2DH (His3Asp with two His and one Asp in the same plane) and H3D (His3Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuIIâ bound structural mimics of Cuâ only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.Artificial defenders: Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. This work describes the first models of Cuâ only SOD in a de novo designed peptide including structural and kinetic analyses. A comparison of the copper ligand type and position is discussed, highlighting our ability to mediate the metalâ binding environment. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Springer | |
dc.subject.other | metalloproteins | |
dc.subject.other | enzymes | |
dc.subject.other | protein design | |
dc.subject.other | metalloenzymes | |
dc.subject.other | bioinorganic chemistry | |
dc.title | Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152985/1/chem201903808_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152985/2/chem201903808.pdf | |
dc.identifier.doi | 10.1002/chem.201903808 | |
dc.identifier.source | Chemistry â A European Journal | |
dc.identifier.citedreference | K. J. Koebke, L. Ruckthong, J. L. Meagher, E. Mathieu, J. Harland, A. Deb, N. Lehnert, C. Policar, C. Tard, J. E. Penner-Hahn, J. A. Stuckey, V. L. Pecoraro, Inorg. Chem. 2018, 57, 12291 â 12302. | |
dc.identifier.citedreference | M. W. Sutherland, B. A. Learmonth, Free Radical Res. 1997, 27, 283 â 289. | |
dc.identifier.citedreference | Y.-H. Chen, J. T. Yang, K. H. Chau, Biochemistry 1974, 13, 3350 â 3359. | |
dc.identifier.citedreference | T. E. Creighton, Protein structure: A practical approach, Oxford University Press, New York, 1997. | |
dc.identifier.citedreference | N. J. Greenfield, Nat. Protoc. 2006, 1, 2527 â 2535. | |
dc.identifier.citedreference | M. Niklasson, C. Andresen, S. Helander, M. G. Roth, A. Zimdahl Kahlin, M. Lindqvist Appell, L. G. Martensson, P. Lundstrom, Protein Sci. 2015, 24, 2055 â 2062. | |
dc.identifier.citedreference | J. E. Hahn, R. A. Scott, K. O. Hodgson, S. Doniach, S. R. Desjardins, E. I. Solomon, Chem. Phys. Lett. 1982, 88, 595 â 598. | |
dc.identifier.citedreference | F. de Groot, G. Vankó, P. Glatzel, J. Phys. Condens. Matter 2009, 21, 104207. | |
dc.identifier.citedreference | A. P. Golombek, M. P. Hendrich, J. Magn. Reson. 2003, 165, 33 â 48. | |
dc.identifier.citedreference | E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659 â 3853. | |
dc.identifier.citedreference | S. Kardinahl, S. Anemüller, G. Schäfer, Biol. Chem. 2000, 381, 1089 â 1101. | |
dc.identifier.citedreference | U. Sakaguchi, A. W. Addison, J. Chem. Soc. Dalton Trans. 1979, 600 â 608. | |
dc.identifier.citedreference | A. Diaz, R. Pogni, R. Cao, R. Basosi, Inorg. Chim. Acta 1998, 275â 276, 552 â 556. | |
dc.identifier.citedreference | L. S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1987, 109, 6433 â 6442. | |
dc.identifier.citedreference | M. Eckshtain, I. Zilbermann, A. Mahammed, I. Saltsman, Z. Okun, E. Maimon, H. Cohen, D. Meyerstein, Z. Gross, Dalton Trans. 2009, 7879 â 7882. | |
dc.identifier.citedreference | I. Spasojevic, I. Batinic-Haberle, R. D. Stevens, P. Hambright, A. N. Thorpe, J. Grodkowski, P. Neta, I. Fridovich, Inorg. Chem. 2001, 40, 726 â 739. | |
dc.identifier.citedreference | S. Durot, C. Policar, F. Cisnetti, F. Lambert, J.-P. Renault, G. Pelosi, G. Blain, H. Korri-Youssoufi, J.-P. Mahy, Eur. J. Inorg. Chem. 2005, 3513 â 3523. | |
dc.identifier.citedreference | S. Durot, F. Lambert, J.-P. Renault, C. Policar, Eur. J. Inorg. Chem. 2005, 2789 â 2793. | |
dc.identifier.citedreference | F. C. Friedel, D. Lieb, I. Ivanovic-Burmazovic, J. Inorg. Biochem. 2012, 109, 26 â 32. | |
dc.identifier.citedreference | M. T. Carri, A. Battistonia, F. Polizio, A. Desideri, G. Rotilio, FEBS Lett. 1994, 356, 314 â 316. | |
dc.identifier.citedreference | J. Wang, H. Slunt, V. Gonzales, D. Fromholt, M. Coonfield, N. G. Copeland, N. A. Jenkins, D. R. Borchelt, Hum. Mol. Genet. 2003, 12, 2753 â 2764. | |
dc.identifier.citedreference | J. Wang, A. Caruano-Yzermans, A. Rodriguez, J. P. Scheurmann, H. H. Slunt, X. Cao, J. Gitlin, P. J. Hart, D. R. Borchelt, J. Biol. Chem. 2007, 282, 345 â 352. | |
dc.identifier.citedreference | C. L. Fisher, D. E. Cabelli, J. A. Tainer, R. A. Hallewell, E. D. Getzoff, Proteins Struct. Funct. Bioinf. 1994, 19, 24 â 34. | |
dc.identifier.citedreference | G. R. Moore, G. W. Pettigrew, N. K. Rogers, Proc. Natl. Acad. Sci. USA 1986, 83, 4998 â 4999. | |
dc.identifier.citedreference | C. A. Rohl, R. L. Baldwin, Biochemistry 1997, 36, 8435 â 8442. | |
dc.identifier.citedreference | P. Luo, R. L. Baldwin, Biochemistry 1997, 36, 8413 â 8421. | |
dc.identifier.citedreference | A. Conte-Daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux, G. Gontard, L. Lisnard, C. Hureau, Anal. Chem. 2017, 89, 2155 â 2162. | |
dc.identifier.citedreference | M. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 1 â 6. | |
dc.identifier.citedreference | P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, M. Hagerman, Inorganic Chemistry, 5 th ed., Freeman and Company, New York, 2010. | |
dc.identifier.citedreference | G.â N. George, I.â J. Pickering, EXAFSPAK, http://ssrl.slac.stanford.edu/â george/exafspak/exafs.htm. | |
dc.identifier.citedreference | A. L. Ankudinov, J. J. Rehr, Phys. Rev. B 1997, 56, R 1712 â R 1716. | |
dc.identifier.citedreference | T.-C. Weng, G. S. Waldo, J. E. Penner-Hahn, J. Synchrotron Radiat. 2005, 12, 506 â 510. | |
dc.identifier.citedreference | N. Dimakis, G. Bunker, Phys. Rev. B 2004, 70, 195114. | |
dc.identifier.citedreference | K. M. Faulkner, S. I. Liochev, I. Fridovich, J. Biol. Chem. 1994, 269, 23471 â 23476. | |
dc.identifier.citedreference | R. H. Weiss, A. G. Flickinger, W. J. Rivers, M. M. Hardy, K. W. Aston, U. S. Ryan, D. P. Riley, J. Biol. Chem. 1993, 268, 23049 â 23054. | |
dc.identifier.citedreference | I. N. Jakab, O. LŠrincz, A. Jancsó, T. Gajda, B. Gyurcsik, Dalton Trans. 2008, 6987. | |
dc.identifier.citedreference | A. Jancsó, Z. Paksi, N. Jakab, B. Gyurcsik, A. Rockenbauer, T. Gajda, Dalton Trans. 2005, 3187. | |
dc.identifier.citedreference | B. Bóka, A. Myari, I. Sóvágó, N. Hadjiliadis, J. Inorg. Biochem. 2004, 98, 113 â 122. | |
dc.identifier.citedreference | L. L. Costanzo, G. D. Guidi, S. Giuftida, E. Rizzarelli, G. Vecchio, J. Inorg. Biochem. 1993, 50, 273 â 281. | |
dc.identifier.citedreference | S. Kubota, J. T. Yang, Proc. Natl. Acad. Sci. USA 1984, 81, 3283 â 3286. | |
dc.identifier.citedreference | R. Brigelius, R. Spöttl, W. Bors, E. Lengfelder, M. Saran, U. Weser, FEBS Lett. 1974, 47, 72 â 75. | |
dc.identifier.citedreference | P.-S. Huang, S. E. Boyken, D. Baker, Nature 2016, 537, 320 â 327. | |
dc.identifier.citedreference | J. W. Bryson, S. F. Betz, H. S. Lu, D. J. Suich, H. X. Zhou, K. T. O’Neil, W. F. DeGrado, Science 1995, 270, 935 â 941. | |
dc.identifier.citedreference | J. W. Bryson, J. R. Desjarlais, T. M. Handel, W. F. Degrado, Protein Sci. 1998, 7, 1404 â 1414. | |
dc.identifier.citedreference | W. F. DeGrado, C. M. Summa, V. Pavone, F. Nastri, A. Lombardi, Annu. Rev. Biochem. 1999, 68, 779 â 819. | |
dc.identifier.citedreference | J. S. Plegaria, V. L. Pecoraro, Isr. J. Chem. 2015, 55, 85 â 95. | |
dc.identifier.citedreference | M. Tegoni, Eur. J. Inorg. Chem. 2014, 2177 â 2193. | |
dc.identifier.citedreference | D. Ghosh, V. L. Pecoraro, Curr. Opin. Chem. Biol. 2005, 9, 97 â 103. | |
dc.identifier.citedreference | F. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria, A. G. Tebo, C. S. Mocny, L. Ruckthong, H. Qayyum, V. L. Pecoraro, Chem. Rev. 2014, 114, 3495 â 3578. | |
dc.identifier.citedreference | M. L. Zastrow, V. L. Pecoraro, Coord. Chem. Rev. 2013, 257, 2565 â 2588. | |
dc.identifier.citedreference | U. P. Singh, R. K. Singh, Y. Isogai, Y. Shiro, Int. J. Pept. Res. Ther. 2006, 12, 379 â 385. | |
dc.identifier.citedreference | A. L. Pinto, H. W. Hellinga, J. P. Caradonna, Proc. Natl. Acad. Sci. USA 1997, 94, 5562 â 5567. | |
dc.identifier.citedreference | D. E. Benson, M. S. Wisz, H. W. Hellinga, Proc. Natl. Acad. Sci. USA 2000, 97, 6292 â 6297. | |
dc.identifier.citedreference | S. T. R. Walsh, H. Cheng, J. W. Bryson, H. Roder, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 1999, 96, 5486 â 5491. | |
dc.identifier.citedreference | V. M. Cangelosi, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2014, 53, 7900 â 7903; Angew. Chem. 2014, 126, 8034 â 8037. | |
dc.identifier.citedreference | J. S. Plegaria, M. Duca, C. Tard, T. J. Friedlander, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, Inorg. Chem. 2015, 54, 9470 â 9482. | |
dc.identifier.citedreference | J. S. Plegaria, S. P. Dzul, E. R. P. Zuiderweg, T. L. Stemmler, V. L. Pecoraro, Biochemistry 2015, 54, 2858 â 2873. | |
dc.identifier.citedreference | A. G. Tebo, A. Quaranta, C. Herrero, V. L. Pecoraro, A. Aukauloo, ChemPhotoChem 2017, 1, 89 â 92. | |
dc.identifier.citedreference | A. G. Tebo, T. B. J. Pinter, R. Garcia-Serres, A. L. Speelman, C. Tard, O. Seneque, G. Blondin, J. M. Latour, J. Penner-Hahn, N. Lehnert, V. L. Pecoraro, Biochemistry 2018, 57, 2308 â 2316. | |
dc.identifier.citedreference | K. J. Koebke, F. Yu, E. Salerno, C. Van Stappen, A. G. Tebo, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2018, 57, 3954 â 3957; Angew. Chem. 2018, 130, 4018 â 4021. | |
dc.identifier.citedreference | J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049 â 6055. | |
dc.identifier.citedreference | Y.-H. Zhou, H. Fu, W.-X. Zhao, W.-L. Chen, C.-Y. Su, H. Sun, L.-N. Ji, Z.-W. Mao, Inorg. Chem. 2007, 46, 734 â 739. | |
dc.identifier.citedreference | D. à rus, A. Jancsó, D. Szunyogh, F. Matyuska, N. V. Nagy, E. Hoffmann, T. Körtvélyesi, T. Gajda, J. Inorg. Biochem. 2012, 106, 10 â 18. | |
dc.identifier.citedreference | D. P. Riley, Chem. Rev. 1999, 99, 2573 â 2588. | |
dc.identifier.citedreference | I. Fridovich, J. Biol. Chem. 1970, 245, 4053 â 4057. | |
dc.identifier.citedreference | D. Salvemini, C. Muscoli, D. P. Riley, S. Cuzzocrea, Pulm. Pharmacol. Ther. 2002, 15, 439 â 447. | |
dc.identifier.citedreference | O. Iranzo, Bioorg. Chem. 2011, 39, 73 â 87. | |
dc.identifier.citedreference | Y. Sheng, I. A. Abreu, D. E. Cabelli, M. J. Maroney, A.-F. Miller, M. Teixeira, J. S. Valentine, Chem. Rev. 2014, 114, 3854 â 3918. | |
dc.identifier.citedreference | C. Policar in Redox Active Therapeutics (Eds.: J.â S. Reboucas, I. Batinic-Haberle, I. Spasojevic, D.â S. Warner, D. St.â Clair ), Springer, Cham, 2016, pp.â 125 â 164. | |
dc.identifier.citedreference | I. A. Abreu, D. E. Cabelli, Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 263 â 274. | |
dc.identifier.citedreference | J. D. Aguirre, V. C. Culotta, J. Biol. Chem. 2012, 287, 13541 â 13548. | |
dc.identifier.citedreference | D. P. Barondeau, C. J. Kassmann, C. K. Bruns, J. A. Tainer, E. D. Getzoff, Biochemistry 2004, 43, 8038 â 8047. | |
dc.identifier.citedreference | J. E. Gleason, A. Galaleldeen, R. L. Peterson, A. B. Taylor, S. P. Holloway, J. Waninger-Saroni, B. P. Cormack, D. E. Cabelli, P. J. Hart, V. C. Culotta, Proc. Natl. Acad. Sci. USA 2014, 111, 5866 â 5871. | |
dc.identifier.citedreference | L. Spagnolo, I. Törö, M. Dâ ²Orazio, P. O’Neill, J. Z. Pedersen, O. Carugo, G. Rotilio, A. Battistoni, K. DjinoviÄ -Carugo, J. Biol. Chem. 2004, 279, 33447 â 33455. | |
dc.identifier.citedreference | C. X. Li, J. E. Gleason, S. X. Zhang, V. M. Bruno, B. P. Cormack, V. C. Culotta, Proc. Natl. Acad. Sci. USA 2015, 112, E 5336 â E 5342. | |
dc.identifier.citedreference | N. G. Robinett, R. L. Peterson, V. C. Culotta, J. Biol. Chem. 2018, 293, 4636 â 4643. | |
dc.identifier.citedreference | R. L. Peterson, A. Galaleldeen, J. Villarreal, A. B. Taylor, D. E. Cabelli, P. J. Hart, V. C. Culotta, J. Biol. Chem. 2016, 291, 20911 â 20923. | |
dc.identifier.citedreference | H. J. Forman, I. Fridovich, Arch. Biochem. Biophys. 1973, 158, 396 â 400. | |
dc.identifier.citedreference | S. B. Choudhury, J.-W. Lee, G. Davidson, Y.-I. Yim, K. Bose, M. L. Sharma, S.-O. Kang, D. E. Cabelli, M. J. Maroney, Biochemistry 1999, 38, 3744 â 3752. | |
dc.identifier.citedreference | I. Batinic-Haberle, A. Tovmasyan, E. R. Roberts, Z. Vujaskovic, K. W. Leong, I. Spasojevic, Antioxid. Redox Signaling 2014, 20, 2372 â 2415. | |
dc.identifier.citedreference | I. BatiniÄ -Haberle, J. S. Rebouças, I. SpasojeviÄ , Antioxid. Redox Signaling 2010, 13, 877 â 918. | |
dc.identifier.citedreference | R. P. Bonomo, G. Impellizzeri, D. La Mendola, G. Maccarrone, G. Pappalardo, A. Santoro, G. Tabbi, G. Vecchio, E. Rizzarelli in Metalâ Ligand Interactions: Molecular, Nano-, Micro- and Macro-systems in Complex Environments, (Eds.: N. Russo, D.â R. Salahub, M. Witko ), Kluwer Academic Publishers, Dordrecht, 2003, pp.â 41 â 63. | |
dc.identifier.citedreference | I. Batinic-Haberle, A. Tovmasyan, I. Spasojevic, Antioxid. Redox Signaling 2018, 29, 1691 â 1724. | |
dc.identifier.citedreference | I. Batinic-Haberle, M. E. Tome, Redox Biol 2019, 25, 101139. | |
dc.identifier.citedreference | J.-J. Zhang, Q.-H. Luo, D.-L. Long, J.-T. Chen, F.-M. Li, A.-D. Liu, J. Chem. Soc. Dalton Trans. 2000, 1893 â 1900. | |
dc.identifier.citedreference | C.-J. Feng, Q.-H. Luo, Z.-L. Wang, M.-C. Shen, H.-W. Wang, M.-H. Zhao, J. Inorg. Biochem. 1999, 75, 1 â 6. | |
dc.identifier.citedreference | A. Kotynia, T. Janek, Å». Czyżnikowska, S. BieliÅ ska, W. Kamysz, J. BrasuÅ , Int. J. Pept. Res. Ther. 2017, 23, 431 â 439. | |
dc.identifier.citedreference | G. Csire, S. Timári, J. Asztalos, J. M. Király, M. Kiss, K. Várnagy, J. Inorg. Biochem. 2017, 177, 198 â 210. | |
dc.identifier.citedreference | S. Timári, R. Cerea, K. Várnagy, J. Inorg. Biochem. 2011, 105, 1009 â 1017. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.