Show simple item record

Single‐nucleotide polymorphisms are associated with cognitive decline at Alzheimer’s disease conversion within mild cognitive impairment patients

dc.contributor.authorLee, Eunjee
dc.contributor.authorGiovanello, Kelly S.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorXie, Fengchang
dc.contributor.authorKong, Dehan
dc.contributor.authorWang, Yue
dc.contributor.authorYang, Liuqing
dc.contributor.authorIbrahim, Joseph G.
dc.contributor.authorDoraiswamy, P. Murali
dc.contributor.authorZhu, Hongtu
dc.date.accessioned2020-01-13T15:14:45Z
dc.date.available2020-01-13T15:14:45Z
dc.date.issued2017
dc.identifier.citationLee, Eunjee; Giovanello, Kelly S.; Saykin, Andrew J.; Xie, Fengchang; Kong, Dehan; Wang, Yue; Yang, Liuqing; Ibrahim, Joseph G.; Doraiswamy, P. Murali; Zhu, Hongtu (2017). "Single‐nucleotide polymorphisms are associated with cognitive decline at Alzheimer’s disease conversion within mild cognitive impairment patients." Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 8(C): 86-95.
dc.identifier.issn2352-8729
dc.identifier.issn2352-8729
dc.identifier.urihttps://hdl.handle.net/2027.42/152989
dc.description.abstractIntroductionThe growing public threat of Alzheimer’s disease (AD) has raised the urgency to quantify the degree of cognitive decline during the conversion process of mild cognitive impairment (MCI) to AD and its underlying genetic pathway. The aim of this article was to test genetic common variants associated with accelerated cognitive decline after the conversion of MCI to AD.MethodsIn 583 subjects with MCI enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; ADNI‐1, ADNI‐Go, and ADNI‐2), 245 MCI participants converted to AD at follow‐up. We tested the interaction effects between individual single‐nucleotide polymorphisms and AD diagnosis trajectory on the longitudinal Alzheimer’s Disease Assessment Scale‐Cognition scores.ResultsOur findings reveal six genes, including BDH1, ST6GAL1, RAB20, PDS5B, ADARB2, and SPSB1, which are directly or indirectly related to MCI conversion to AD.DiscussionThis genome‐wide association study sheds light on a genetic mechanism of longitudinal cognitive changes during the transition period from MCI to AD.
dc.publisherAlzheimer’s Association
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMild cognitive impairment
dc.subject.otherCognitive decline
dc.subject.otherLongitudinal study
dc.subject.otherAlzheimer’s disease
dc.subject.otherGWAS
dc.titleSingle‐nucleotide polymorphisms are associated with cognitive decline at Alzheimer’s disease conversion within mild cognitive impairment patients
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152989/1/dad2jdadm201704004-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152989/2/dad2jdadm201704004.pdf
dc.identifier.doi10.1016/j.dadm.2017.04.004
dc.identifier.sourceAlzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
dc.identifier.citedreferenceS. Sinha, J.P. Anderson, R. Barbour, G.S. Basi, R. Caccavello, D. Davis, et al. Purification and cloning of amyloid precursor protein β‐secretase from human brain. Nature. 402: 1999; 537 – 540
dc.identifier.citedreferenceX. Hu, E.H. Pickering, S.K. Hall, S. Naik, Y.C. Liu, H. Soares, et al. Genome‐wide association study identifies multiple novel loci associated with disease progression in subjects with mild cognitive impairment. Transl Psychiatry. 1: 2011; e54
dc.identifier.citedreferenceA.J. Saykin, L. Shen, T.M. Foroud, S.G. Potkin, S. Swaminathan, S. Kim, et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement. 6: 2010; 265 – 273
dc.identifier.citedreferenceS. Purcell, B. Neale, K. Todd‐Brown, L. Thomas, M.A. Ferreira, D. Bender, et al. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet. 81: 2007; 559 – 575
dc.identifier.citedreferenceY. Li, C.J. Willer, J. Ding, P. Scheet, G.R. Abecasis. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 34: 2010; 816 – 834
dc.identifier.citedreferenceE.Y. Liu, S. Buyske, A.K. Aragaki, U. Peters, E. Boerwinkle, C. Carlson, et al. Genotype Imputation of MetabochipSNPs Using a Study‐SpecificReference Panel of∼ 4,000 Haplotypes in African Americans From the Women’s Health Initiative. Genet Epidemiol. 36: 2012; 107 – 117
dc.identifier.citedreferenceM.G. Kenward, J.H. Roger. Small sample inference for fixed effects from restricted maximum likelihood.. Biometrics. 53: 1997; 983 – 997
dc.identifier.citedreferenceA.L. Price, N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick, D. Reich. Principal components analysis corrects for stratification in genome‐wide association studies. Nat Genet. 38: 2006; 904 – 909
dc.identifier.citedreferenceR.J. Pruim, R.P. Welch, S. Sanna, T.M. Teslovich, P.S. Chines, T.P. Gliedt, et al. LocusZoom: regional visualization of genome‐wide association scan results. Bioinformatics. 26: 2010; 2336 – 2337
dc.identifier.citedreferenceS.J. Furney, A. Simmons, G. Breen, I. Pedroso, K. Lunnon, P. Proitsi, et al. Genome‐wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry. 16: 2011; 1130 – 1138
dc.identifier.citedreferenceJ. Yan, S. Kim, K. Nho, R. Chen, S.L. Risacher, J.H. Moore, et al. Hippocampal transcriptome‐guided genetic analysis of correlated episodic memory phenotypes in Alzheimer’s disease. Front Genet. 6: 2015 https://doi.org/10.3389/fgene.2015.00117
dc.identifier.citedreferenceO. Kohannim, D.P. Hibar, J.L. Stein, N. Jahanshad, X. Hua, P. Rajagopalan, et al. Discovery and Replication of Gene Influences on Brain Structure Using LASSO Regression. Front Neurosci. 6: 2012 https://doi.org/10.3389/fnins.2012.00115
dc.identifier.citedreferenceC.D. Smith, M. Malcein, K. Meurer, F.A. Schmitt, W.R. Markesbery, L.C. Pettigrew. MRI temporal lobe volume measures and neuropsychologic function in Alzheimer’s disease. J Neuroimaging. 9: 1999; 2 – 9
dc.identifier.citedreferenceH. Shi, O. Belbin, C. Medway, K. Brown, N. Kalsheker, M. Carrasquillo, et al. Genetic variants influencing human aging from late‐onset Alzheimer’s disease (LOAD) genome‐wide association studies (GWAS). Neurobiol Aging. 33: 2012, 1849.e5–18
dc.identifier.citedreferenceG. Atzmon, C. Schechter, W. Greiner, D. Davidson, G. Rennert, N. Barzilai. Clinical phenotype of families with longevity. J Am Geriatr Soc. 52: 2004; 274 – 277
dc.identifier.citedreferenceI. Hussain, D. Powell, D.R. Howlett, D.G. Tew, T.D. Meek, C. Chapman, et al. Identification of a novel aspartic protease (Asp 2) as β‐secretase. Mol Cell Neurosci. 14: 1999; 419 – 427
dc.identifier.citedreferenceR. Vassar, B.D. Bennett, S. Babu‐Khan, S. Kahn, E.A. Mendiaz, P. Denis, et al. β‐Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 286: 1999; 735 – 741
dc.identifier.citedreferenceH. Cai, Y. Wang, D. McCarthy, H. Wen, D.R. Borchelt, D.L. Price, et al. BACE1 is the major β‐secretase for generation of Aβ peptides by neurons. Nat Neurosci. 4: 2001; 233 – 234
dc.identifier.citedreferenceS. Kitazume, Y. Tachida, R. Oka, K. Shirotani, T.C. Saido, Y. Hashimoto. Alzheimer’s β‐secretase, β‐site amyloid precursor protein‐cleaving enzyme, is responsible for cleavage secretion of a Golgi‐resident sialyltransferase. Proc Natl Acad Sci U S A. 98: 2001; 13554 – 13559
dc.identifier.citedreferenceK. Nakagawa, S. Kitazume, R. Oka, K. Maruyama, T.C. Saido, Y. Sato, et al. Sialylation enhances the secretion of neurotoxic amyloid‐β peptides. J Neurochem. 96: 2006; 924 – 933
dc.identifier.citedreferenceT. Wyss‐Coray. Inflammation in Alzheimer disease: driving force, bystander or beneficial response?. Nat Med. 12: 2006; 1005 – 1015
dc.identifier.citedreferenceY. Liang, S. Lin, L. Zou, H. Zhou, J. Zhang, B. Su, et al. Expression profiling of Rab GTPases reveals the involvement of Rab20 and Rab32 in acute brain inflammation in mice. Neurosci Lett. 527: 2012; 110 – 114
dc.identifier.citedreferenceT. Nishiya, K. Matsumoto, S. Maekawa, E. Kajita, T. Horinouchi, M. Fujimuro, et al. Regulation of inducible nitric‐oxide synthase by the SPRY domain‐and SOCS box‐containing proteins. J Biol Chem. 286: 2011; 9009 – 9019
dc.identifier.citedreferenceT. Togo, O. Katsuse, E. Iseki. Nitric oxide pathways in Alzheimer’s disease and other neurodegenerative dementias. Neurol Res. 26: 2004; 563 – 566
dc.identifier.citedreferenceO.W. Griffith, D.J. Stuehr. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 57: 1995; 707 – 734
dc.identifier.citedreferenceF.H. Guo, S.A. Comhair, S. Zheng, R.A. Dweik, N.T. Eissa, M.J. Thomassen, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post‐translational regulation of NO synthesis. J Immunol. 164: 2000; 5970 – 5980
dc.identifier.citedreferenceC. Nathan. Inducible nitric oxide synthase: what difference does it make?. J Clin Invest. 100: 1997; 2417
dc.identifier.citedreferenceD. Villela, C. Suemoto, C. Pasqualucci, L.T. Grinberg, C. Rosenberg. Do copy number changes in CACNA2D2, CACNA2D3 and CACNA1D constitute a predisposing risk factor for Alzheimer’s disease?. Front Genet. 7: 2016; 107
dc.identifier.citedreferenceS. Kim, H. Rhim. Effects of amyloid‐β peptides on voltage‐gated L‐type CaV1. 2 and CaV1. 3 Ca2+ channels. Mol Cells. 32: 2011; 289 – 294
dc.identifier.citedreferenceJ.S. Kooner, D. Saleheen, X. Sim, J. Sehmi, W. Zhang, P. Frossard, et al. Genome‐wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 43: 2011; 984 – 989
dc.identifier.citedreferenceR.A. Whitmer, A.J. Karter, K. Yaffe, C.P. Quesenberry, J.V. Selby. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 301: 2009; 1565 – 1572
dc.identifier.citedreferenceL.E. Hebert, J. Weuve, D.A. Evans, P.A. Scherr. Alzheimer disease in the United States (2010‐2050) estimated using the 2010 census. Neurology. 80: 2013; 1778 – 1783
dc.identifier.citedreferenceAlzheimer’s Association. Changing the trajectory of Alzheimer’s disease: A National Imperative. 2010; Alzheimer’s Association: Chicago, IL
dc.identifier.citedreferenceS. Seshadri, A.L. Fitzpatrick, M.A. Ikram, A.L. DeStefano, V. Gudnason, M. Boada, et al. Genome‐wide analysis of genetic loci associated with Alzheimer disease. JAMA. 303: 2010; 1832 – 1840
dc.identifier.citedreferenceG.W. Beecham, E.R. Martin, Y.J. Li, M.A. Slifer, J.R. Gilbert, J.L. Haines, et al. Genome‐wide Association Study Implicates a Chromosome 12 Risk Locus for Late‐Onset Alzheimer Disease. Am J Hum Genet. 84: 2009; 35 – 43
dc.identifier.citedreferenceA.C. Naj, G.W. Beecham, E.R. Martin, P.J. Gallins, E.H. Powell, I. Konidari, et al. Dementia Revealed: Novel Chromosome 6 Locus for Late‐Onset Alzheimer Disease Provides Genetic Evidence for Folate‐Pathway Abnormalities. PLoS Genet. 6: 2010; e1001130
dc.identifier.citedreferenceH. Li, S. Wetten, L. Li, P.L.S. Jean, R. Upmanyu, L. Surh, et al. Candidate single‐nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 65: 2008; 45 – 53
dc.identifier.citedreferenceM.M. Carrasquillo, F. Zou, V.S. Pankratz, S.L. Wilcox, L. Ma, L.P. Walker, et al. Genetic variation in PCDH11X is associated with susceptibility to late‐onset Alzheimer’s disease. Nat Genet. 41: 2009; 192 – 198
dc.identifier.citedreferenceA.C. Naj, G. Jun, G.W. Beecham, L.S. Wang, B.N. Vardarajan, J. Buros, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late‐onset Alzheimer’s disease. Nat Genet. 43: 2011; 436 – 441
dc.identifier.citedreferenceD. Scheuner, C. Eckman, M. Jensen, X. Song, M. Citron, N. Suzuki, et al. Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 2: 1996; 864 – 870
dc.identifier.citedreferenceA. Goate, M.C. Chartier‐Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 349: 1991; 704 – 706
dc.identifier.citedreferenceA.M. Saunders, W.J. Strittmatter, D. Schmechel, P.S. George‐Hyslop, M.A. Pericak‐Vance, S.H. Joo, et al. Association of apolipoprotein E allele ε4 with late‐onset familial and sporadic Alzheimer’s disease. Neurology. 43: 1993; 1467 – 1472
dc.identifier.citedreferenceE.H. Corder, A.M. Saunders, W.J. Strittmatter, D.E. Schmechel, P.C. Gaskell, G. Small, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 261: 1993; 921 – 923
dc.identifier.citedreferenceD. Harold, R. Abraham, P. Hollingworth, R. Sims, A. Gerrish, M.L. Hamshere, et al. Genome‐wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 41: 2009; 1088 – 1093
dc.identifier.citedreferenceJ.C. Lambert, S. Heath, G. Even, D. Campion, K. Sleegers, M. Hiltunen, et al. Genome‐wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 41: 2009; 1094 – 1099
dc.identifier.citedreferenceK.D. Coon, A.J. Myers, D.W. Craig, J.A. Webster, J.V. Pearson, D.H. Lince, et al. A high‐density whole‐genome association study reveals that APOE is the major susceptibility gene for sporadic late‐onset Alzheimer’s disease. J Clin Psychiatry. 68: 2007; 613 – 618
dc.identifier.citedreferenceD.M. Walsh, D.J. Selkoe. Aβ oligomers‐a decade of discovery. J Neurochem. 101: 2007; 1172 – 1184
dc.identifier.citedreferenceQ. Xiao, S.H. Gil, P. Yan, Y. Wang, S. Han, E. Gonzales, et al. Role of phosphatidylinositol clathrin assembly lymphoid‐myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem. 287: 2012; 21279 – 21289
dc.identifier.citedreferenceR. Petersen, G. Smith, S. Waring, R. Ivnik, E. Tangalos, E. Kokmen. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 56: 1999; 303 – 308
dc.identifier.citedreferenceJ. Olazaran, R. Muniz, B. Reisberg, J. Peña‐Casanova, T. Del Ser, A.J. Cruz‐Jentoft, et al. Benefits of cognitive‐motor intervention in MCI and mild to moderate Alzheimer disease. Neurology. 63: 2004; 2348 – 2353
dc.identifier.citedreferenceJ.L. Cummings, R. Doody, C. Clark. Disease‐modifying therapies for Alzheimer disease Challenges to early intervention. Neurology. 69: 2007; 1622 – 1634
dc.identifier.citedreferenceV.C. Buschert, U. Friese, S.J. Teipel, P. Schneider, W. Merensky, D. Rujescu, et al. Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer’s disease: a pilot study. J Alzheimers Dis. 25: 2011; 679 – 694
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.