Show simple item record

Defining a spectrum of integrative traitâ based vegetation canopy structural types

dc.contributor.authorFahey, Robert T.
dc.contributor.authorAtkins, Jeff W.
dc.contributor.authorGough, Christopher M.
dc.contributor.authorHardiman, Brady S.
dc.contributor.authorNave, Lucas E.
dc.contributor.authorTallant, Jason M.
dc.contributor.authorNadehoffer, Knute J.
dc.contributor.authorVogel, Christoph
dc.contributor.authorScheuermann, Cynthia M.
dc.contributor.authorStuart‐haëntjens, Ellen
dc.contributor.authorHaber, Lisa T.
dc.contributor.authorFotis, Alexander T.
dc.contributor.authorRicart, Raleigh
dc.contributor.authorCurtis, Peter S.
dc.date.accessioned2020-01-13T15:14:53Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:14:53Z
dc.date.issued2019-12
dc.identifier.citationFahey, Robert T.; Atkins, Jeff W.; Gough, Christopher M.; Hardiman, Brady S.; Nave, Lucas E.; Tallant, Jason M.; Nadehoffer, Knute J.; Vogel, Christoph; Scheuermann, Cynthia M.; Stuart‐haëntjens, Ellen ; Haber, Lisa T.; Fotis, Alexander T.; Ricart, Raleigh; Curtis, Peter S. (2019). "Defining a spectrum of integrative traitâ based vegetation canopy structural types." Ecology Letters 22(12): 2049-2059.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/152994
dc.description.abstractVegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest subâ set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that withinâ ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with subâ continental variation in forest types and ecoâ climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structureâ function relationships in vegetated ecosystems.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Science & Business Media
dc.subject.otherstructure
dc.subject.otherlidar
dc.subject.othercomplexity
dc.subject.otherCanopy
dc.subject.othertraits
dc.titleDefining a spectrum of integrative traitâ based vegetation canopy structural types
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/1/ele13388_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/2/ele13388.pdf
dc.identifier.doi10.1111/ele.13388
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceNiinemets, Ã . ( 2012 ). Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiol., 32, 505 â 509.
dc.identifier.citedreferenceLiaw, A. & Wiener, M. ( 2018 ). randomForest R Package v. 4.6â 14. Breiman and Cutler’s Random Forests for Classification and Regression: Classification and regression based on a forest of trees using random inputs. https://CRAN.Râ project.org/package=randomForest
dc.identifier.citedreferenceMaurer, K., Bohrer, G., Kenny, W. & Ivanov, V. ( 2015 ). Largeâ eddy simulations of surface roughness parameter sensitivity to canopyâ structure characteristics. Biogeosciences, 12, 2533 â 2548.
dc.identifier.citedreferenceMcCune, B. & Grace, J.B. ( 2002 ). Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR, US.
dc.identifier.citedreferenceMcCune, B. & Keon, D. ( 2002 ). Equations for potential annual direct incident radiation and heat load. J. Veg. Sci., 13, 603 â 606.
dc.identifier.citedreferenceMcCune, B. & Mefford, M.J. ( 2006 ). PCâ ORD. Multivariate Analysis of Ecological Data. MjM Software Design. Gleneden Beach, Oregon, USA. Version 5.31.
dc.identifier.citedreferenceMontgomery, R.A. & Chazdon, R.L. ( 2001 ). Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology, 82, 2707 â 2718.
dc.identifier.citedreferenceMoran, C.J., Rowell, E.M. & Seielstad, C.A. ( 2018 ). A dataâ driven framework to identify and compare forest structure classes using LiDAR. Remote Sens. Environ., 211, 154 â 166.
dc.identifier.citedreferenceNadkarni, N.M., McIntosh, A.C. & Cushing, J.B. ( 2008 ). A framework to categorize forest structure concepts. For. Ecol. Manage., 256, 872 â 882.
dc.identifier.citedreferenceNave, L.E., Gough, C.M., Perry, C.H., Hofmeister, K.L., Le Moine, J.M., Domke, G.M., et al. ( 2017 ). Physiographic factors underlie rates of biomass production during succession in Great Lakes forest landscapes. For. Ecol. Manage., 397, 157 â 173.
dc.identifier.citedreferenceNiinemets, U. ( 2007 ). Photosynthesis and resource distribution through plant canopies. Plant, Cell Environ., 30, 1052 â 1071.
dc.identifier.citedreferenceParker, G.G. & Brown, M.J. ( 2000 ). Forest canopy stratificationâ is it useful? Am. Nat., 155, 473 â 484.
dc.identifier.citedreferenceParker, G.G., O’Neill, J.P. & Higman, D. ( 1989 ). Vertical profile and canopy organization in a mixed deciduous forest. Plant Ecol., 85, 1 â 11.
dc.identifier.citedreferenceParker, G.G., Harding, D.J. & Berger, M.L. ( 2004a ). A portable LIDAR system for rapid determination of forest canopy structure. J. Appl. Ecol., 41, 755 â 767.
dc.identifier.citedreferenceParker, G.G., Harmon, M.E., Lefsky, M.A., Chen, J., Van Pelt, R., Weis, S.B., et al. ( 2004b ). Threeâ dimensional structure of an oldâ growth Pseudotsugaâ Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems, 7, 440 â 453.
dc.identifier.citedreferencePaynter, I., Genest, D., Saenz, E., Peri, F., Boucher, P., Li, Z., et al. ( 2018 ). Classifying ecosystems with metaproperties from terrestrial laser scanner data. Methods Ecol. Evol., 9, 210 â 222.
dc.identifier.citedreferencePearsall, D.R. ( 1995 ). Landscape ecosystems of the University of Michigan Biological Station: ecosystem diversity and groundâ cover diversity. Michigan Univ, Ann Arbor, MI.
dc.identifier.citedreferencePrentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. ( 1992 ). Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 117 â 134.
dc.identifier.citedreferenceReich, P.B. ( 2012 ). Key canopy traits drive forest productivity. Proc. R. Soc. London B: Biol. Sci., 279, 2128 â 2134. rspb20112270.
dc.identifier.citedreferenceReich, P., Ellsworth, D., Kloeppel, B., Fownes, J. & Gower, S. ( 1990 ). Vertical variation in canopy structure and CO2 exchange of oakâ maple forests: influence of ozone, nitrogen, and other factors on simulated canopy carbon gain. Tree Physiol., 7, 329 â 345.
dc.identifier.citedreferenceRuefenacht, B., Finco, M., Nelson, M., Czaplewski, R., Helmer, E., Blackard, J., et al. ( 2008 ). Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing, 74, 1379 â 1388.
dc.identifier.citedreferenceRunning, S.W., Loveland, T.R., Pierce, L.L., Nemani, R.R. & Hunt, E.R. Jr ( 1995 ). A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ., 51, 39 â 48.
dc.identifier.citedreferenceSASâ Institute ( 2013 ). SAS v. 9.4. SAS Institute Inc., Durham, NC.
dc.identifier.citedreferenceScheuermann, C.M., Nave, L.E., Fahey, R.T., Nadelhoffer, K.J. & Gough, C.M. ( 2018 ). Effects of canopy structure and species diversity on primary production in upper Great Lakes forests. Oecologia, 188, 1 â 11.
dc.identifier.citedreferenceSeidel, D., Ehbrecht, M. & Puettmann, K. ( 2016 ). Assessing different components of threeâ dimensional forest structure with singleâ scan terrestrial laser scanning: A case study. For. Ecol. Manage., 381, 196 â 208.
dc.identifier.citedreferenceSeidl, R., Rammer, W. & Spies, T.A. ( 2014 ). Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl., 24, 2063 â 2077.
dc.identifier.citedreferenceShugart, H., Saatchi, S. & Hall, F. ( 2010 ). Importance of structure and its measurement in quantifying function of forest ecosystems. J. Geophys. Res., Biogeosciences, 115, 1 â 16.
dc.identifier.citedreferenceStuartâ Haëntjens, E.J., Curtis, P.S., Fahey, R.T., Vogel, C.S. & Gough, C.M. ( 2015 ). Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. Ecology, 96, 2478 â 2487.
dc.identifier.citedreferenceVerbeeck, H., Bauters, M., Jackson, T., Shenkin, A., Disney, M. & Calders, K. ( 2019 ). Time for a plant structural economics spectrum. Frontiers in Forests and Global Change, 2, 1 â 5. https://doi.org/10.3389/ffgc.2019.00043
dc.identifier.citedreferenceVojtech, E., Loreau, M., Yachi, S., Spehn, E.M. & Hector, A. ( 2008 ). Light partitioning in experimental grass communities. Oikos, 117, 1351 â 1361.
dc.identifier.citedreferenceWestoby, M. & Wright, I.J. ( 2003 ). The leaf sizeâ twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621 â 628.
dc.identifier.citedreferenceWhittaker, R. ( 1970 ). Communities and Ecosystems. Macmillan, London.
dc.identifier.citedreferenceWright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428, 821.
dc.identifier.citedreferenceWright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. ( 2017 ). Global climatic drivers of leaf size. Science, 357, 917 â 921.
dc.identifier.citedreferenceAber, J.D., Pastor, J. & Melillo, J.M. ( 1982 ). Changes in forest canopy structure along a site quality gradient in southern Wisconsin. Am. Midl. Nat., 108, 256 â 265.
dc.identifier.citedreferenceAnten, N.P. ( 2004 ). Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot., 95, 495 â 506.
dc.identifier.citedreferenceAtkins, J., Bohrer, G., Fahey, R., Hardiman, B., Gough, C., Morin, T., et al. ( 2018a ). forestr: Ecosystem and Canopy Structural Complexity Metrics from LiDAR. R package version, 1, 1. https://CRAN.R-project.org/package=forestr
dc.identifier.citedreferenceAtkins, J., Fahey, R., Hardiman, B. & Gough, C. ( 2018b ). Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci., 123, 1387 â 1405.
dc.identifier.citedreferenceAtkins, J.W., Bohrer, G., Fahey, R.T., Hardiman, B.S., Morin, T.H., Stovall, A.E. et al. ( 2018c ). Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package. Methods Ecol. Evol., 9, 2057 â 2066.
dc.identifier.citedreferenceBailey, R.G. ( 2004 ). Identifying ecoregion boundaries. Environ. Manage., 34, S14 â S26.
dc.identifier.citedreferenceBailey, R.G. ( 2009 ). Ecosystem geography: from ecoregions to sites. Springer Science & Business Media, New York, NY.
dc.identifier.citedreferenceBarnes, K.W., Islam, K. & Auer, S.A. ( 2016 ). Integrating LIDARâ derived canopy structure into cerulean warbler habitat models. J. Wildl. Manag., 80, 101 â 116.
dc.identifier.citedreferenceBox, E.O. ( 1996 ). Plant functional types and climate at the global scale. J. Veg. Sci., 7, 309 â 320.
dc.identifier.citedreferenceBreiman, L. ( 2001 ). Random forests. Machine Learning, 45, 5 â 32.
dc.identifier.citedreferenceBrokaw, N.V.L. & Lent, R.A. ( 1999 ). Vertical structure. In: Maintaining Biodiversity in Forest Ecosystems (ed Hunter, M.L. ). Cambridge University Press, Cambridge, pp. 373 â 399.
dc.identifier.citedreferenceBugmann, H. ( 1996 ). Functional types of trees in temperate and boreal forests: classification and testing. J. Veg. Sci., 7, 359 â 370.
dc.identifier.citedreferenceChave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. ( 2009 ). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351 â 366.
dc.identifier.citedreferenceChen, J.M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., et al. ( 2012 ). Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochem. Cycles, 1 â 18.
dc.identifier.citedreferenceCushman, K. & Kellner, J.R. ( 2019 ). Prediction of forest aboveground net primary production from highâ resolution vertical leafâ area profiles. Ecol. Lett., 22, 538 â 546. https://doi.org/10.1111/ele.13214.
dc.identifier.citedreferenceCutler, D.R., Edwards, T.C. Jr., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., et al. ( 2007 ). Random forests for classification in ecology. Ecology, 88, 2783 â 2792.
dc.identifier.citedreferenceDanson, F.M., Disney, M.I., Gaulton, R., Schaaf, C. & Strahler, A. ( 2018 ). The terrestrial laser scanning revolution in forest ecology. Interface Focus, 8, 20180001.
dc.identifier.citedreferenceDial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. ( 2004 ). The distribution of free space and its relation to canopy composition at six forest sites. For. Sci., 50, 312 â 325.
dc.identifier.citedreferenceEhbrecht, M., Schall, P., Juchheim, J., Ammer, C. & Seidel, D. ( 2016 ). Effective number of layers: a new measure for quantifying threeâ dimensional stand structure based on sampling with terrestrial LiDAR. For. Ecol. Manage., 380, 212 â 223.
dc.identifier.citedreferenceEhbrecht, M., Schall, P., Ammer, C. & Seidel, D. ( 2017 ). Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol., 242, 1 â 9.
dc.identifier.citedreferenceEllsworth, D. & Reich, P. ( 1993 ). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96, 169 â 178.
dc.identifier.citedreferenceFahey, R.T., Fotis, A.T. & Woods, K.D. ( 2015 ). Quantifying canopy complexity and effects on productivity and resilience in lateâ successional hemlockâ hardwood forests. Ecol. Appl., 25, 834 â 847.
dc.identifier.citedreferenceFahey, R.T., Stuartâ Haëntjens, E.J., Gough, C.M., De La Cruz, A., Stockton, E., Vogel, C.S., et al. ( 2016 ). Evaluating forest subcanopy response to moderate severity disturbance and contribution to ecosystemâ level productivity and resilience. For. Ecol. Manage., 376, 135 â 147.
dc.identifier.citedreferenceFahey, R.T., Alveshere, B.C., Burton, J.I., D’Amato, A.W., Dickinson, Y.L., Keeton, W.S., et al. ( 2018 ). Shifting conceptions of complexity in forest management and silviculture. For. Ecol. Manage., 421, 59 â 71.
dc.identifier.citedreferenceFotis, A.T. & Curtis, P.S. ( 2017 ). Effects of structural complexity on withinâ canopy light environments and leaf traits in a northern mixed deciduous forest. Tree Physiol., 37, 1416 â 1435. https://doi.org/10.1093/treephys/tpw1124
dc.identifier.citedreferenceFotis, A.T., Morin, T.H., Fahey, R.T., Hardiman, B.S., Bohrer, G. & Curtis, P.S. ( 2018 ). Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol., 250, 181 â 191.
dc.identifier.citedreferenceFranklin, J.F. & Van Pelt, R. ( 2004 ). Spatial aspects of structural complexity in oldâ growth forests. J. Forest., 102, 22 â 28.
dc.identifier.citedreferenceGivnish, T.J. ( 1982 ). On the adaptive significance of leaf height in forest herbs. Am. Nat., 120, 353 â 381.
dc.identifier.citedreferenceGough, C.M., Vogel, C.S., Harrold, K.H., George, K. & Curtis, P.S. ( 2007 ). The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Change Biol., 13, 1935 â 1949.
dc.identifier.citedreferenceGough, C.M., Hardiman, B.S., Nave, L., Bohrer, G., Maurer, K.D., Vogel, C.S., et al. ( 2013 ). Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol. Appl., 23, 1202 â 1215.
dc.identifier.citedreferenceGough, C.M., Curtis, P.S., Hardiman, B.S., Scheuermann, C.M. & Bondâ Lamberty, B. ( 2016 ). Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere, 7, e01375.
dc.identifier.citedreferenceGough, C.M., Atkins, J.W., Fahey, R.T. & Hardiman, B.S. ( 2019 ). High rates of primary production in structurally complex forests. Ecology, e02864. https://doi.org/10.1002/ecy.2864.
dc.identifier.citedreferenceHardiman, B.S., Bohrer, G., Gough, C.M., Vogel, C.S. & Curtis, P.S. ( 2011 ). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818 â 1827.
dc.identifier.citedreferenceHardiman, B.S., Bohrer, G., Gough, C.M. & Curtis, P.S. ( 2013a ). Canopy structural changes following widespread mortality of canopy dominant trees. Forests, 4, 537 â 552.
dc.identifier.citedreferenceHardiman, B.S., Gough, C.M., Halperin, A., Hofmeister, K.L., Nave, L.E., Bohrer, G., et al. ( 2013b ). Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. For. Ecol. Manage., 298, 111 â 119.
dc.identifier.citedreferenceHardiman, B., LaRue, E., Atkins, J., Fahey, R., Wagner, F. & Gough, C. ( 2018 ). Spatial variation in canopy structure across forest landscapes. Forests, 9, 474.
dc.identifier.citedreferenceHikosaka, K. & Anten, N.P. ( 2012 ). An evolutionary game of leaf dynamics and its consequences for canopy structure. Funct. Ecol., 26, 1024 â 1032.
dc.identifier.citedreferenceHorn, H.S. ( 1971 ). The adaptive geometry of trees. Princeton University Press, London.
dc.identifier.citedreferenceHurtt, G., Fisk, J., Thomas, R., Dubayah, R., Moorcroft, P. & Shugart, H. ( 2010 ). Linking models and data on vegetation structure. J. Geophys. Res., Biogeosciences, 115, 1 â 11.
dc.identifier.citedreferenceIlangakoon, N.T., Glenn, N.F., Dashti, H., Painter, T.H., Mikesell, T.D., Spaete, L.P., et al. ( 2018 ). Constraining plant functional types in a semiâ arid ecosystem with waveform lidar. Remote Sens. Environ., 209, 497 â 509.
dc.identifier.citedreferenceIshii, H. & Asano, S. ( 2010 ). The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol. Res., 25, 715 â 722.
dc.identifier.citedreferenceIshii, H.T., Tanabe, S.â I. & Hiura, T. ( 2004 ). Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci., 50, 342 â 355.
dc.identifier.citedreferenceJucker, T., Bouriaud, O. & Coomes, D.A. ( 2015 ). Crown plasticity enables trees to optimize canopy packing in mixedâ species forests. Funct. Ecol., 29, 1078 â 1086.
dc.identifier.citedreferenceJucker, T., Bongalov, B., Burslem, D.F., Nilus, R., Dalponte, M., Lewis, S.L., et al. ( 2018 ). Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989 â 1000.
dc.identifier.citedreferenceKane, V.R., Bakker, J.D., McGaughey, R.J., Lutz, J.A., Gersonde, R.F. & Franklin, J.F. ( 2010 ). Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Can. J. For. Res., 40, 774 â 787.
dc.identifier.citedreferenceKao, R.H., Gibson, C.M., Gallery, R.E., Meier, C.L., Barnett, D.T., Docherty, K.M., et al. ( 2012 ). NEON terrestrial field observations: designing continentalâ scale, standardized sampling. Ecosphere, 3, 1 â 17.
dc.identifier.citedreferenceLeiterer, R., Furrer, R., Schaepman, M.E. & Morsdorf, F. ( 2015 ). Forest canopyâ structure characterization: a dataâ driven approach. For. Ecol. Manage., 358, 48 â 61.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.