Show simple item record

A review of hippocampal activation in post‐traumatic stress disorder

dc.contributor.authorJoshi, Sonalee A.
dc.contributor.authorDuval, Elizabeth R.
dc.contributor.authorKubat, Bradley
dc.contributor.authorLiberzon, Israel
dc.date.accessioned2020-01-13T15:15:49Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:15:49Z
dc.date.issued2020-01
dc.identifier.citationJoshi, Sonalee A.; Duval, Elizabeth R.; Kubat, Bradley; Liberzon, Israel (2020). "A review of hippocampal activation in post‐traumatic stress disorder." Psychophysiology (1): n/a-n/a.
dc.identifier.issn0048-5772
dc.identifier.issn1469-8986
dc.identifier.urihttps://hdl.handle.net/2027.42/153031
dc.description.abstractPost‐traumatic stress disorder (PTSD) is often characterized by deficits in memory encoding and retrieval and aberrant fear and extinction learning. The hippocampus plays a critical role in memory and contextual processing and has been implicated in intrinsic functional connectivity networks involved in self‐referential thought and memory‐related processes. This review focuses on hippocampal activation findings during memory and fear and extinction learning tasks, as well as resting state hippocampal connectivity in individuals with PTSD. A preponderance of functional neuroimaging studies to date, using memory, fear learning, and extinction tasks, report decreased or “controls comparable” hippocampal activation in individuals with PTSD, which is usually associated with poorer performance on the task imaged. Existing evidence thus raises the possibility that greater hippocampal recruitment in PTSD participants may be required for similar performance levels. Studies of resting state functional connectivity in PTSD predominantly report reduced within‐network connectivity in the default mode network (DMN), as well as greater coupling between the DMN and salience network (SN) via the hippocampus. Together, these findings suggest that deficient hippocampal activation in PTSD may be associated with poorer performance during memory, extinction recall, and fear renewal tasks. Furthermore, studies of resting state connectivity implicate the hippocampus in decreased within‐network DMN connectivity and greater coupling with SN regions characteristic of PTSD.The hippocampus plays a key role in memory, fear learning and extinction, and default mode network resting state connectivity, all processes which have known deficits in post‐traumatic stress disorder (PTSD). In this review, we examine recent fMRI studies on hippocampal function in PTSD and controls and identify critical areas for future research to explore.
dc.publisherAuthor
dc.publisherWiley Periodicals, Inc.
dc.subject.otherextinction learning
dc.subject.otherPTSD
dc.subject.otherresting state
dc.subject.othermemory
dc.subject.otherhippocampus
dc.subject.otherfMRI
dc.subject.otherfear learning
dc.titleA review of hippocampal activation in post‐traumatic stress disorder
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153031/1/psyp13357.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153031/2/psyp13357_am.pdf
dc.identifier.doi10.1111/psyp.13357
dc.identifier.sourcePsychophysiology
dc.identifier.citedreferenceSapolsky, R. M. ( 2000 ). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57 ( 10 ), 925 – 935. https://doi.org/10.1001/archpsyc.57.10.925
dc.identifier.citedreferencePape, H.‐C., & Pare, D. ( 2010 ). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiology Review, 90, 419 – 463. https://doi.org/10.1152/physrev.00037.2009
dc.identifier.citedreferencePatel, R., Spreng, R. N., Shin, L. M., & Girard, T. A. ( 2012 ). Neurocircuitry models of posttraumatic stress disorder and beyond: A meta‐analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 36, 2130 – 2142. https://doi.org/10.1016/j.neubiorev.2012.06.003
dc.identifier.citedreferencePatriat, R., Birn, R. M., Keding, T. J., & Herringa, R. J. ( 2016 ). Default‐mode network abnormalities in pediatric posttraumatic stress disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 55 ( 4 ), 319 – 327. https://doi.org/10.1016/j.jaac.2016.01.010
dc.identifier.citedreferencePower, J. D, Cohen, A. L, Nelson, S. M, Wig, G. S, Barnes, K. A., Church, J. A., … Petersen, S. E. ( 2011 ). Functional network organization of the human brain. Neuron, 72 ( 4 ), 665 – 678.
dc.identifier.citedreferenceRabinak, C. A., MacNamara, A., Kennedy, A. E., Angstadt, M., Stein, M. B., Liberzon, I., & Phan, L. ( 2014 ). Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depression and Anxiety, 31, 851 – 861.
dc.identifier.citedreferenceSamuelson, K. W. ( 2011 ). Post‐traumatic stress disorder and declarative memory functioning: A review. Dialogues in Clinical Neuroscience, 13 ( 3 ), 346 – 351.
dc.identifier.citedreferenceScoville, W. B., & Milner, B. ( 1957 ). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20 ( 1 ), 11 – 21. https://doi.org/10.1136/jnnp.20.1.11
dc.identifier.citedreferenceSeeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Gary, H., Kenna, H., & Greicius, M. D. ( 2009 ). Dissociable intrinsic connectivity networks for salience processing and executive control. NIH Public Access, 27 ( 9 ), 2349 – 2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
dc.identifier.citedreferenceSharot, T., & Yonelinas, A. P. ( 2008 ). Differential time‐dependent effects of emotion on recollective experience and memory for contextual information. Cognition, 106 ( 1 ), 538 – 547. https://doi.org/10.1016/j.cognition.2007.03.002
dc.identifier.citedreferenceSierra‐Mercado, D., Padilla‐Coreano, N., & Quirk, G. J. ( 2011 ). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36 ( 2 ), 529 – 538. https://doi.org/10.1038/npp.2010.184
dc.identifier.citedreferenceShin, L. M., & Liberzon, I. ( 2010 ). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35 ( 1 ), 169 – 191. https://doi.org/10.1038/npp.2009.83
dc.identifier.citedreferenceSpielberg, J. M., McGlinchey, R. E., Milberg, W. P., & Salat, D. H. ( 2015 ). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biological Psychiatry, 78 ( 3 ), 210 – 216. https://doi.org/10.1016/j.biopsych.2015.02.013
dc.identifier.citedreferenceSripada, R. K., Garfinkel, S. N., & Liberzon, I. ( 2013 ). Avoidant symptoms in PTSD predict fear circuit activation during multimodal fear extinction. Frontiers in Human Neuroscience, 7, https://doi.org/10.3389/fnhum.2013.00672
dc.identifier.citedreferenceSripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., & Liberzon, I. ( 2012 ). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74 ( 9 ), 904 – 911. https://doi.org/10.1097/PSY.0b013e318273bf33
dc.identifier.citedreferenceSt. Jacques, P. L., Botzung, A., Miles, A., & Rubin, D. C. ( 2011 ). Functional neuroimaging of emotionally intense autobiographical memories in post‐traumatic stress disorder. Journal of Psychiatric Research, 45 ( 5 ), 630 – 637. https://doi.org/10.1016/j.jpsychires.2010.10.011
dc.identifier.citedreferenceSteiger, F., Nees, F., Wicking, M., Lang, S., & Flor, H. ( 2015 ). Behavioral and central correlates of contextual fear learning and contextual modulation of cued fear in posttraumatic stress disorder. International Journal of Psychophysiology, 98 ( 3 ), 584 – 593. https://doi.org/10.1016/j.ijpsycho.2015.06.009
dc.identifier.citedreferenceTamburrino, M. B., Chan, P., Prescott, M., Calabrese, J., Liberzon, I., Slembarski, R., … Galea, S. ( 2015 ). Baseline prevalence of Axis I diagnosis in the Ohio Army National Guard. Psychiatry Research, 226 ( 1 ), 142 – 148. https://doi.org/10.1016/j.psychres.2014.12.038
dc.identifier.citedreferenceThomaes, K., Dorrepaal, E., Draijer, N. P. J., DeRuiter, M. B., Elzinga, B. M., VanBalkom, A. J., … Veltman, D. J. ( 2009 ). Increased activation of the left hippocampus region in complex PTSD during encoding and recognition of emotional words: A pilot study. Psychiatry Research, 171 ( 1 ), 44 – 53.
dc.identifier.citedreferenceThomaes, K., Dorrepaal, E., Draijer, N., deRuiter, M. B., Elzinga, B. M., Sjoerds, Z., … Veltman, D. J. ( 2013 ). Increased anterior cingulate cortex and hippocampus activation in complex PTSD during encoding of negative words. Social Cognitive and Affective Neuroscience, 8 ( 2 ), 190 – 200. https://doi.org/10.1093/scan/nsr084
dc.identifier.citedreferenceThompson, W. W., Gottesman, I. I., & Zalewski, C. ( 2006 ). Reconciling disparate prevalence rates of PTSD in large samples of US male Vietnam veterans and their controls. BMC Psychiatry, 6, 19. https://doi.org/10.1186/1471-244X-6-19
dc.identifier.citedreferenceVaidya, C. J., & Gordon, E. M. ( 2013 ). Phenotypic variability in resting‐state functional connectivity: Current status. Brain Connectivity, 3 ( 2 ), 99 – 120. https://doi.org/10.1089/brain.2012.0110
dc.identifier.citedreferenceVan Rooij, S. J. H., Kennis, M., Sjouwerman, R., van den Heuvel, M. P., Kahn, R. S., & Geuze, E. ( 2015 ). Smaller hippocampal volume as a vulnerability factor for the persistence of post‐traumatic stress disorder. Psychological Medicine, 45 ( 13 ), 2737 – 2746. https://doi.org/10.1017/S0033291715000707
dc.identifier.citedreferenceVasterling, J. J., Duke, L. M., Brailey, K., Constans, J. I., Allain, A. N., & Sutker, P. B. ( 2002 ). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16 ( 1 ), 5 – 14. https://doi.org/10.1037//0894-4105.16.1.5
dc.identifier.citedreferenceWerner, N. S., Meindl, T., Engel, R. R., Rosner, R., Riedel, M., Reiser, M., & Fast, K. ( 2009 ). Hippocampal function during associative learning in patients with posttraumatic stress disorder. Journal of Psychiatric Research, 43 ( 3 ), 309 – 318. https://doi.org/10.1016/j.jpsychires.2008.03.011
dc.identifier.citedreferenceWicking, M., Steiger, F., Nees, F., Diener, S. J., Grimm, O., Ruttorf, M., … Flor, H. ( 2016 ). Deficient fear extinction memory in posttraumatic stress disorder. Neurobiology of Learning and Memory, 136, 116 – 126. https://doi.org/10.1016/j.nlm.2016.09.016
dc.identifier.citedreferenceWotjak, C. T., & Pape, H.‐C. ( 2013 ). Neuronal circuits of fear memory and fear extinction. E‐Neuroforum, 19 ( 3 ), 47 – 56. https://doi.org/10.1007/s13295-013-0046-0
dc.identifier.citedreferenceAkiki, T. J., Averill, C. L., & Abdallah, C. G. ( 2017 ). A network‐based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Current Psychiatry Reports, 19 ( 11 ), 18. https://doi.org/10.1007/s11920-017-0840-4
dc.identifier.citedreferenceAllen, R. J. ( 2018 ). Classic and recent advances in understanding amnesia. F1000Research, 7, 331. https://doi.org/10.12688/f1000research.13737.1
dc.identifier.citedreferenceAmerican Psychiatric Association ( 2013 ). Diagnostic and statistical manual of mental disorders ( 5th ed. ). Washington, DC: Author.
dc.identifier.citedreferenceBergstrom, H. C. ( 2016 ). The neurocircuitry of remote cued fear memory. Neuroscience and Biobehavioral Reviews, 71, 409 – 417. https://doi.org/10.1016/j.neubiorev.2016.09.028
dc.identifier.citedreferenceBerron, D., Schütze, H., Maass, A., Cardenas‐Blanco, A., Kuijf, H. J., Kumaran, D., & Düzel, E. ( 2018 ). Strong evidence for pattern separation in human dentate gyrus. Journal of Neuroscience, 36 ( 29 ), 7569 – 7579. https://doi.org/10.1523/JNEUROSCI.0518-16.2016
dc.identifier.citedreferenceBremner, J. D. ( 2006 ). Traumatic stress: Effects on the brain. Dialogues in Clinical Neuroscience, 8 ( 4 ), 445 – 461.
dc.identifier.citedreferenceBremner, J. D., Staib, L. H., Kaloupek, D., Southwick, S. M., Soufer, R., & Charney, D. S. ( 1999 ). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45, 806 – 816.
dc.identifier.citedreferenceBrohawn, K. H., Offringa, R., Pfaff, D. L., Hughes, K. C., & Shin, L. M. ( 2010 ). The neural correlates of emotional memory in posttraumatic stress disorder. Biological Psychiatry, 68 ( 11 ), 1023 – 1030. https://doi.org/10.1016/j.biopsych.2010.07.018
dc.identifier.citedreferenceBrown, A., Addis, D. R., Romano, T., Marmar, C., Bryant, R., & Hirst, W. ( 2014 ). Episodic and semantic components of autobiographical memories and imagined future events in post‐traumatic stress disorder. Memory, 22, 595 – 604.
dc.identifier.citedreferenceBrown, A. D., Root, J. C., Romano, T. A., Chang, L. J., Bryant, R. A., & Hirst, W. ( 2013 ). Overgeneralized autobiographical memory and future thinking in combat veterans with posttraumatic stress disorder. Journal of Behavior Therapy and Experimental Psychiatry, 44 ( 1 ), 129 – 134. https://doi.org/10.1016/j.jbtep.2011.11.004
dc.identifier.citedreferenceCarrión, V. G., Haas, B. W., Garrett, A., Song, S., & Reiss, A. L. ( 2010 ). Reduced hippocampal activity in youth with posttraumatic stress symptoms: An fMRI study. Journal of Pediatric Psychology, 35 ( 5 ), 559 – 569. https://doi.org/10.1093/jpepsy/jsp112
dc.identifier.citedreferenceCisler, J. M., Bush, K., James, G. A., Smitherman, S., & Kilts, C. D. ( 2015 ). Decoding the traumatic memory among women with PTSD: Implications for neurocircuitry models of PTSD and real‐time fMRI neurofeedback. PLOS One, 10 ( 8 ), e0134717. https://doi.org/10.1371/journal.pone.0134717
dc.identifier.citedreferenceChao, L., Weiner, M., & Neylan, T. ( 2013 ). Regional cerebral volumes in veterans with current versus remitted posttraumatic stress disorder. Psychiatry Research, 213 ( 3 ), 193 – 201. https://doi.org/10.1016/j.pscychresns.2013.03.002
dc.identifier.citedreferenceChildress, J. E., Mcdowell, E. J., Dalai, V. V., Bogale, S. R., Ramamurthy, C., Jawaid, A., … Schulz, P. E. ( 2013 ). Hippocampal Volumes in patients with chronic combat‐related posttraumatic stress disorder: A systematic review. Journal of Neuropsychiatry and Clinical Neurosciences, 25 ( 1 ), 12 – 25. https://doi.org/10.1176/appi.neuropsych.12010003
dc.identifier.citedreferenceCohen, N. J., & Squire, L. R. ( 1980 ). Preserved learning and retention of a pattern‐analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207 – 210.
dc.identifier.citedreferenceDere, E., Pause, B. M., & Pietrowsky, R. ( 2010 ). Emotion and episodic memory in neuropsychiatric disorders. Behavioral Brain Research, 215, 162 – 171. https://doi.org/10.1016/j.bbr.2010.03.017
dc.identifier.citedreferenceDuncan, K., Ketz, N., Inati, S. J., & Davachi, L. ( 2012 ). Evidence for area CA1 as a match/mismatch detector: A high‐resolution fMRI study of the human hippocampus. Hippocampus, 22 ( 3 ), 389 – 398. https://doi.org/10.1002/hipo.20933
dc.identifier.citedreferenceDuval, E., Javanbakht, A., & Liberzon, I. ( 2015 ). Neural circuits in anxiety and stress disorders: A focused review. Therapeutics and Clinical Risk Management, 11, 115 – 126. https://doi.org/10.2147/TCRM.S48528
dc.identifier.citedreferenceEhlers, A., & Clark, D. M. ( 2000 ). A cognitive model of posttraumatic stress disorder. Behaviour Research and Therapy, 38, 319 – 345. https://doi.org/10.1016/S0005-7967(99)00123-0
dc.identifier.citedreferenceEichenbaum, H. ( 2017 ). Prefrontal–hippocampal interactions in episodic memory. Nature Reviews Neuroscience, 18 ( 9 ), 547 – 558. https://doi.org/10.1038/nrn.2017.74
dc.identifier.citedreferenceEichenbaum, H., & Cohen, N. J. ( 2014 ). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83 ( 4 ), 764 – 770. https://doi.org/10.1016/j.neuron.2014.07.032
dc.identifier.citedreferenceFornito, A., & Bullmore, E. T. ( 2010 ). What can spontaneous fluctuations of the blood oxygenation‐level‐dependent signal tell us about psychiatric disorders? Current Opinion in Psychiatry, 23 ( 3 ), 239 – 249. https://doi.org/10.1097/yco.0b013e328337d78
dc.identifier.citedreferenceFox, D., Snyder, A. Z., Barch, D. M., Gusnard, D. A., & Raichle, M. E. ( 2005 ). Transient BOLD responses at block transitions. NeuroImage, 28, 956 – 966. https://doi.org/10.1016/j.neuroimage.2005.06.025
dc.identifier.citedreferenceFrankland, P. W., & Bontempi, B. ( 2005 ). The organization of recent and remote memories. Nature Reviews Neuroscience, 6 ( 2 ), 119 – 130. https://doi.org/10.1038/nrn1607
dc.identifier.citedreferenceGarfinkel, S. N., Abelson, J. L., King, A. P., Sripada, R. K., Wang, X., Gaines, L. M., & Liberzon, I. ( 2014 ). Impaired contextual modulation of memories in PTSD: An fMRI and psychophysiological study of extinction retention and fear renewal. Journal of Neuroscience, 34 ( 40 ), 13435 – 13443. https://doi.org/10.1523/jneurosci.4287-13.2014
dc.identifier.citedreferenceGeuze, E., Vermetten, E., Ruf, M., de Kloet, C. S., & Westenberg, H. G. M. ( 2008 ). Neural correlates of associative learning and memory in veterans with posttraumatic stress disorder. Journal of Psychiatric Research, 42 ( 8 ), 659 – 669. https://doi.org/10.1016/j.jpsychires.2007.06.007
dc.identifier.citedreferenceGilbert, P. E., Kesner, R. P., & Lee, I. ( 2001 ). Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1. Hippocampus, 11 ( 6 ), 626 – 636. https://doi.org/10.1002/hipo.1077
dc.identifier.citedreferenceGilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., & Pitman, R. K. ( 2002 ). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5 ( 11 ), 1242 – 1247. https://doi.org/10.1038/nn958.Smaller
dc.identifier.citedreferenceGreicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. ( 2003 ). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100 ( 1 ), 253 – 258. https://doi.org/10.1073/pnas.0135058100
dc.identifier.citedreferenceHayes, J. P., LaBar, K. S., McCarthy, G., Selgrade, E., Nasser, J., Dolcos, F., … Morey, R. A. ( 2011 ). Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat‐related PTSD. Journal of Psychiatric Research, 45 ( 5 ), 660 – 669. https://doi.org/10.1016/j.jpsychires.2010.10.007
dc.identifier.citedreferenceHayes, J. P., Vanelzakker, M. B., & Shin, L. M. ( 2012 ). Emotion and cognition interactions in PTSD: A review of neurocognitive and neuroimaging studies. Frontiers in Integrative Neuroscience, 6 ( Oct ), 89. https://doi.org/10.3389/fnint.2012.00089
dc.identifier.citedreferenceHuijgen, J., & Samson, S. ( 2015 ). The hippocampus: A central node in a large‐scale brain network for memory. Revue Neurologique, 171 ( 3 ), 204 – 216. https://doi.org/10.1016/j.neurol.2015.01.557
dc.identifier.citedreferenceJanak, P. H., & Tye, K. M. ( 2015 ). From circuits to behaviour in the amygdala. Nature, 517 ( 7534 ), 284 – 292. https://doi.org/10.1038/nature14188
dc.identifier.citedreferenceJin, C., Qi, R., Yin, Y., Hu, X., Duan, L., Xu, Q., … Li, L. ( 2014 ). Abnormalities in whole‐brain functional connectivity observed in treatment‐naive post‐traumatic stress disorder patients following an earthquake. Psychological Medicine, 44 ( 9 ), 1927 – 1936. https://doi.org/10.1017/S003329171300250X
dc.identifier.citedreferenceJovanovic, T., Kazama, A., Bachevalier, J., & Davis, M. ( 2012 ). Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology, 62 ( 2 ), 695 – 704. https://doi.org/10.1016/j.neuropharm.2011.02.023
dc.identifier.citedreferenceKessler, R. C. ( 2000 ). Posttraumatic stress disorder: The burden to the individual and to society. Journal of Clinical Psychiatry, 61 ( Suppl 5 ), 4 – 12.
dc.identifier.citedreferenceKessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. ( 2005 ). Lifetime prevalence and age‐of‐onset distributions of DSM‐IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593 – 602. https://doi.org/10.1001/archpsyc.62.6.593
dc.identifier.citedreferenceLabar, K. S., Gatenby, J., Gore, J. C., Ledoux, J. E., & Phelps, E. A. ( 1998 ). Human amygdala activation during conditioned fear acquisition and extinction: A mixed‐trial fMRI study. Neuron, 20 ( 5 ), 937 – 945. https://doi.org/10.1016/s0896-6273(00)80475-4
dc.identifier.citedreferenceLevy‐Gigi, E., Kéri, S., Myers, C. E., Lencovsky, Z., Sharvit‐Benbaji, H., Orr, S. P., … Gluck, M. A. ( 2012 ). Individuals with posttraumatic stress disorder show a selective deficit in generalization of associative learning. Neuropsychology, 26 ( 6 ), 758 – 767. https://doi.org/10.1037/a0029361
dc.identifier.citedreferenceLevy‐Gigi, E., Szabo, C., Richter‐Levin, G., & Kéri, S. ( 2014 ). Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD. Neuropsychology, 29 ( 1 ), 151 – 161. https://doi.org/10.1037/neu0000131
dc.identifier.citedreferenceLiberzon, I., & Abelson, J. L. ( 2016 ). Context processing and the neurobiology of post‐traumatic stress disorder. Neuron, 92 ( 1 ), 14 – 30. https://doi.org/10.1016/j.neuron.2016.09.039
dc.identifier.citedreferenceLogue, M. W., van Rooij, S. J. H., Dennis, E. L., Davis, S. L., Hayes, J. P., Stevens, J. S., …, Morey, R. A. ( 2018 ). Smaller hippocampal volume in posttraumatic stress disorder: A multisite ENIGMA‐PGC study: Subcortical volumetry results from posttraumatic stress disorder consortia. Biological Psychiatry, 83, 244 – 253. https://doi.org/10.1016/j.biopsych.2017.09.006
dc.identifier.citedreferenceLopresto, D., Schipper, P., & Homberg, J. R. ( 2016 ). Neural circuits and mechanisms involved in fear generalization: Implications for the pathophysiology and treatment of posttraumatic stress disorder. Neuroscience and Biobehavioral Reviews, 60, 31 – 42. https://doi.org/10.1016/j.neubiorev.2015.10.009
dc.identifier.citedreferenceMaren, S., Phan, K. L., & Liberzon, I. ( 2013 ). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14 ( 6 ), 417 – 428. https://doi.org/10.1038/nrn3492
dc.identifier.citedreferenceMcCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. A. ( 2018 ). Mind‐wandering in people with hippocampal damage. Journal of Neuroscience, 38 ( 11 ), 2745 – 2754. https://doi.org/10.1523/jneurosci.1812-17.2018
dc.identifier.citedreferenceMcEwen, B. S. ( 1999 ). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22 ( 1 ), 105 – 122. https://doi.org/10.1146/annurev.neuro.22.1.105
dc.identifier.citedreferenceMeyer, T., Quaedflieg, C. W. E. M., Weijland, K., Schruers, K., Merckelbach, H., & Smeets, T. ( 2018 ). Frontal EEG asymmetry during symptom provocation predicts subjective responses to intrusions in survivors with and without PTSD. Psychophysiology, 55 ( 1 ), 88 – 108. https://doi.org/10.1111/psyp.12779
dc.identifier.citedreferenceMilad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., … Rauch, S. L. ( 2009 ). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66 ( 12 ), 1075 – 1082. https://doi.org/10.1016/j.biopsych.2009.06.026
dc.identifier.citedreferenceMilad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. ( 2007 ). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62 ( 5 ), 446 – 454. https://doi.org/10.1016/j.biopsych.2006.10.011
dc.identifier.citedreferenceMiler, D. R., Hayes, S. M., Hayes, J. P., Spielberg, J. M., Lafleche, G., & Verfaellie, M. ( 2017 ). Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2 ( 4 ), 363 – 371. https://doi.org/10.1016/j.bpsc.2016.12.006
dc.identifier.citedreferenceMitra, A., & Raichle, M. E. ( 2016 ). How networks communicate: Propagation patterns in spontaneous brain activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 ( 1705 ), 20150546. https://doi.org/10.1098/rstb.2015.0546
dc.identifier.citedreferenceNadel, L., & Moscovitch, M. ( 1997 ). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinions in Neurobiology, 7, 217 – 227. https://doi.org/10.1016/S0959-4388(97)80010-4
dc.identifier.citedreferenceNakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., … Tonegawa, S. ( 2012 ). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149 ( 1 ), 188 – 201. https://doi.org/10.1016/j.cell.2012.01.046
dc.identifier.citedreferenceNelson, M., & Tumpap, A. ( 2017 ). Posttraumatic stress disorder symptom severity is associated with left hippocampal volume reduction: A meta‐analytic study. CNS Spectrums, 22 ( 4 ), 363 – 372. https://doi.org/10.1017/S1092852916000833
dc.identifier.citedreferenceNiibori, Y., Yu, T.‐S., Epp, J. R., Akers, K. G., Josselyn, S. A., & Frankland, P. W. ( 2012 ). Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nature Communications, 3, 1253. https://doi.org/10.1038/ncomms2261
dc.identifier.citedreferenceOpitz, B. ( 2014 ). Memory function and the hippocampus. Frontiers of Neurology and Neuroscience. The Hippocampus in Clinical Neuroscience, 34, 51 – 59. https://doi.org/10.1159/000356422
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.