Show simple item record

Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis

dc.contributor.authorHu, Chang‐deng
dc.contributor.authorGrinberg, Asya V.
dc.contributor.authorKerppola, Tom K.
dc.date.accessioned2020-01-13T15:15:54Z
dc.date.available2020-01-13T15:15:54Z
dc.date.issued2005-08
dc.identifier.citationHu, Chang‐deng ; Grinberg, Asya V.; Kerppola, Tom K. (2005). "Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis." Current Protocols in Protein Science 41(1): 19.10.1-19.10.21.
dc.identifier.issn1934-3655
dc.identifier.issn1934-3663
dc.identifier.urihttps://hdl.handle.net/2027.42/153035
dc.description.abstractProtein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.
dc.publisherWiley Periodicals, Inc.
dc.titleVisualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153035/1/cpps1910.pdf
dc.identifier.doi10.1002/0471140864.ps1910s41
dc.identifier.sourceCurrent Protocols in Protein Science
dc.identifier.citedreferencePaulmurugan, R. and Gambhir, S.S. 2003. Monitoring proteinâ protein interactions using split synthetic renilla luciferase proteinâ fragmentâ assisted complementation. Anal. Chem. 75: 1584 â 1589.
dc.identifier.citedreferencePelletier, J.N., Campbellâ Valois, F.X., and Michnick, S.W. 1998. Oligomerization domainâ directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. U.S.A. 95: 12141 â 12146.
dc.identifier.citedreferenceRackham, O. and Brown, C.M. 2004. Visualization of RNAâ protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23: 3346 â 3355.
dc.identifier.citedreferenceRajaram, N. and Kerppola, T. 2004. Transcription activation by Maf and Sox, and their subnuclear localization are disrupted by a mutation in Maf that causes cataract. Mol. Cell. Biol. 24: 5694 â 5709.
dc.identifier.citedreferenceRemy, I. and Michnick, S.W. 2004a. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 32: 381 â 388.
dc.identifier.citedreferenceRemy, I. and Michnick, S.W. 2004b. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Biol. 24: 1493 â 1504.
dc.identifier.citedreferenceRemy, I., Montmarquette, A., and Michnick, S.W. 2004. PKB/Akt modulates TGFâ beta signalling through a direct interaction with Smad3. Nature Cell Biol. 6: 358 â 365.
dc.identifier.citedreferenceRossi, F., Charlton, C.A., and Blau, H.M. 1997. Monitoring proteinâ protein interactions in intact eukaryotic cells by betaâ galactosidase complementation. Proc. Natl. Acad. Sci. U.S.A. 94: 8405 â 8410.
dc.identifier.citedreferenceRossi, F.M., Guicherit, O.M., Spicher, A., Kringstein, A.M., Fatyol, K., Blakely, B.T., and Blau, H.M. 1998. Tetracyclineâ regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat. Genet. 20: 389 â 393.
dc.identifier.citedreferenceSorkin, A., McClure, M., Huang, F., and Carter, R. 2000. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10: 1395 â 1398.
dc.identifier.citedreferenceTsuchisaka, A. and Theologis, A. 2004a. Heterodimeric interactions among the 1â aminoâ cyclopropaneâ 1â carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc. Natl. Acad. Sci. U.S.A. 101: 2275 â 2280.
dc.identifier.citedreferenceTsuchisaka, A. and Theologis, A. 2004b. Unique and overlapping expression patterns among the arabidopsis 1â aminoâ cyclopropaneâ 1â carboxylate synthase gene family members. Plant Physiol. 136: 2982 â 3000.
dc.identifier.citedreferenceTzfira, T., Vaidya, M., and Citovsky, V. 2004. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87 â 92.
dc.identifier.citedreferenceUllmann, A., Jacob, F., and Monod, J. 1967. Characterization by in vitro complementation of a peptide corresponding to an operatorâ proximal segment of the betaâ galactosidase structural gene of Escherichia coli. J. Mol. Biol. 24: 339 â 343.
dc.identifier.citedreferenceUllmann, A., Jacob, F., and Monod, J. 1968. On the subunit structure of wildâ type versus complemented betaâ galactosidase of Escherichia coli. J. Mol. Biol. 32: 1 â 13.
dc.identifier.citedreferencevon der Lehr, N., Johansson, S., Wu, S., Bahram, F., Castell, A., Cetinkaya, C., Hydbring, P., Weidung, I., Nakayama, K., Nakayama, K.I., Soderberg, O., Kerppola, T.K., and Larsson, L.G. 2003. The Fâ box protein Skp2 participates in câ Myc proteosomal degradation and acts as a cofactor for câ Mycâ regulated transcription. Mol. Cell 11: 1189 â 1200.
dc.identifier.citedreferenceWalter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40: 428 â 438.
dc.identifier.citedreferenceWehrman, T., Kleaveland, B., Her, J.H., Balint, R.F., and Blau, H.M. 2002. Proteinâ protein interactions monitored in mammalian cells via complementation of betaâ lactamase enzyme fragments. Proc. Natl. Acad. Sci. U.S.A. 99: 3469 â 3474.
dc.identifier.citedreferenceWei, G.H., Liu, D.P., and Liang, C.C. 2004. Charting gene regulatory networks: Strategies, challenges and perspectives. Biochem. J. 381: 1 â 12.
dc.identifier.citedreferenceYu, H., West, M., Keon, B.H., Bilter, G.K., Owens, S., Lamerdin, J., and Westwick, J.K. 2003. Measuring drug action in the cellular context using proteinâ fragment complementation assays. Assay Drug Dev.Technol. 1: 811 â 822.
dc.identifier.citedreferenceZal, T. and Gascoigne, N.R. 2004. Using live FRET imaging to reveal early proteinâ protein interactions during T cell activation. Curr. Opin. Immunol. 16: 418 â 427.
dc.identifier.citedreferenceZhang, S.F., Ma, C., and Chalfie, M. 2004. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119: 137 â 144.
dc.identifier.citedreferenceAtmakuri, K., Ding, Z., and Christie, P.J. 2003. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49: 1699 â 1713.
dc.identifier.citedreferenceBrachaâ Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., and Ohad, N. 2004. Detection of proteinâ protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40: 419 â 427.
dc.identifier.citedreferenceDeppmann, C.D., Thornton, T.M., Utama, F.E., and Taparowsky, E.J. 2003. Phosphorylation of BATF regulates DNA binding: A novel mechanism for APâ 1 (activator proteinâ 1) regulation. Biochem. J. 374: 423 â 431.
dc.identifier.citedreferencede Virgilio, M., Kiosses, W.B., and Shattil, S.J. 2004. Proximal, selective, and dynamic interactions between integrin alpha II beta 3 and protein tyrosine kinases in living cells. J. Cell Biol. 165: 305 â 311.
dc.identifier.citedreferenceFarina, A., Hattori, M., Qin, J., Nakatani, Y., Minato, N., and Ozato, K. 2004. Bromodomain protein Brd4 binds to GTPaseâ activating SPAâ 1, modulating its activity and subcellular localization. Mol. Cell. Biol. 24: 9059 â 9069.
dc.identifier.citedreferenceTsien, R.Y. 2003. Imagining imaging’s future. Nat. Rev. Mol. Cell. Biol. Suppl. SS16 â 21.
dc.identifier.citedreferenceGalarneau, A., Primeau, M., Trudeau, L.E., and Michnick, S.W. 2002. Betaâ lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20: 619 â 622.
dc.identifier.citedreferenceGhosh, I., Hamilton, A.D., and Regan, L. 2000. Antiparallel leucine zipperâ directed protein reassembly: Application to the green fluorescent protein. J. Am. Chem. Soc. 122: 5658 â 5659.
dc.identifier.citedreferenceGrinberg, A.V., Hu, C.D., and Kerppola, T.K. 2004. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell. Biol. 24: 4294 â 4308.
dc.identifier.citedreferenceHink, M.A., Borst, J.W., and Visser, A.J. 2003. Fluorescence correlation spectroscopy of GFP fusion proteins in living plant cells. Methods Enzymol. 361: 93 â 112.
dc.identifier.citedreferenceHu, C.D. and Kerppola, T.K. 2003. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21: 539 â 545.
dc.identifier.citedreferenceHu, C.D., Chinenov, Y., and Kerppola, T.K. 2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9: 789 â 798.
dc.identifier.citedreferenceHynes, T.R., Mervine, S.M., Yost, E.A., Sabo, J.L., and Berlot, C.H. 2004a. Live cell imaging of G(s) and the beta(2)â adrenergic receptor demonstrates that both alpha(s) and beta(1)gamma(7) internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta(2)â adrenergic receptor. J. Biol. Chem. 279: 44101 â 44112.
dc.identifier.citedreferenceHynes, T.R., Tang, L.N., Mervine, S.M., Sabo, J.L., Yost, E.A., Devreotes, P.N., and Berlot, C.H. 2004b. Visualization of G protein beta gamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J. Biol. Chem. 279: 30279 â 30286.
dc.identifier.citedreferenceJohnsson, N. and Varshavsky, A. 1994. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. U.S.A. 91: 10340 â 10344.
dc.identifier.citedreferenceKanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. 2004. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13: 33 â 43.
dc.identifier.citedreferenceLarson, D.R., Ma, Y.M., Vogt, V.M., and Webb, W.W. 2003. Direct measurement of Gagâ Gag interaction during retrovirus assembly with FRET and fluorescence correlation spectroscopy. J. Cell Biol. 162: 1233 â 1244.
dc.identifier.citedreferenceLi, H.Y., Ng, E.K., Lee, S.M., Kotaka, M., Tsui, S.K., Lee, C.Y., Fung, K.P., and Waye, M.M. 2001. Proteinâ protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) twoâ fusion fluorescence resonance energy transfer (FRET). J. Cell. Biochem. 80: 293 â 303.
dc.identifier.citedreferenceMajoul, I., Straub, M., Duden, R., Hell, S.W., and Soling, H.D. 2002. Fluorescence resonance energy transfer analysis of proteinâ protein interactions in single living cells by multifocal multiphoton microscopy. J. Biotechnol. 82: 267 â 277.
dc.identifier.citedreferenceMiyawaki, A. 2003. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4: 295 â 305.
dc.identifier.citedreferenceNagai, T., Sawano, A., Park, E.S., and Miyawaki, A. 2001. Circularly permuted green fluorescent proteins engineered to sense Ca 2+. Proc. Natl. Acad. Sci. U.S.A. 98: 3197 â 202.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.