Show simple item record

Nanostructured ZnO Interphase for Carbon Fiber Reinforced Composites with Strain Rate Tailored Interfacial Strength

dc.contributor.authorNasser, Jalal
dc.contributor.authorSteinke, Kelsey
dc.contributor.authorHwang, Hyun‐sik
dc.contributor.authorSodano, Henry
dc.date.accessioned2020-01-13T15:16:04Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:16:04Z
dc.date.issued2020-01
dc.identifier.citationNasser, Jalal; Steinke, Kelsey; Hwang, Hyun‐sik ; Sodano, Henry (2020). "Nanostructured ZnO Interphase for Carbon Fiber Reinforced Composites with Strain Rate Tailored Interfacial Strength." Advanced Materials Interfaces 7(1): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/153043
dc.description.abstractComposite materials designed for ballistic applications typically require fiberâ matrix interfacial properties which are considerably different than those used in more common structural applications. Ballistic composites are usually benefited through the use of a weaker interface that allows the high tenacity of the fiber to be utilized for energy absorption, whereas structural composites require strong interfaces to ensure materials which do not easily delaminate or experience cracking. Here, the multifunctionality of a zinc oxide (ZnO) interphase through a tailored interfacial shear strength (IFSS) as a function of strain rate is demonstrated. Both ZnO nanowires (NWs) and nanoparticles (NPs) are shown through variable strain rate pullout to enable tailored behavior with the NWs producing an 87% increase in IFSS over untreated fibers under quasiâ static loading, and 53% lower interfacial shear strength than untreated fibers at 2200 sâ 1. The reduced interfacial strength under dynamic loading conditions is attributed to the polymer’s viscoelasticity, as matrix stiffening effects reduce the NWs’ functional gradient, causing brittle failure of the ceramic interphase. The results demonstrate the potential for ZnO NWs and NPs to enable the tailored design of interfaces and to realize multifunctional materials with optimal behavior under both static and dynamic loading conditions.This work shows the tailoring of interfacial properties in carbon fiber reinforced composites through a zinc oxide (ZnO) interphase. The ZnOâ coated carbon fibers display a maximum increase of 87% in interfacial shear strength (IFSS) under quasiâ static loading rates, and a maximum decrease of 53% in IFSS at a high strain rate of 2200 sâ 1, while maintaining their tensile properties.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.othertailored interfacial shear strength
dc.subject.otherlow strain rate
dc.subject.otherhigh strain rate
dc.subject.othercarbon fibers
dc.subject.otherZnO interphases
dc.subject.othermultifunctional performance
dc.titleNanostructured ZnO Interphase for Carbon Fiber Reinforced Composites with Strain Rate Tailored Interfacial Strength
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153043/1/admi201901544.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153043/2/admi201901544_am.pdf
dc.identifier.doi10.1002/admi.201901544
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceM. Tehrani, A. Y. Boroujeni, T. B. Hartman, T. P. Haugh, S. W. Case, M. S. Alâ Haik, Compos. Sci. Technol. 2013, 75, 42.
dc.identifier.citedreferenceA. Bhatnagar, Lightweight Ballistic Composites, Elsevier, New York 2016.
dc.identifier.citedreferenceV. P. McConnell, Reinf. Plast. 2006, 50, 20.
dc.identifier.citedreferenceB. K. Fink, J. Thermoplast. Compos. Mater. 2000, 13, 417.
dc.identifier.citedreferenceR. A. Mcgrane, M.Sc. Thesis, Virginia Polytechnic Institute and State University, 2001.
dc.identifier.citedreferenceA. C. Morgan, US20110203024A1, 2010.
dc.identifier.citedreferenceL. B. Tan, K. M. Tse, H. P. Lee, V. B. C. Tan, S. P. Lim, Int. J. Impact Eng. 2012, 50, 99.
dc.identifier.citedreferenceR. G. Norris, US7797764B2, 2005.
dc.identifier.citedreferenceD. J. Harach, K. S. Vecchio, Metall. Mater. Trans. A 2001, 32, 1493.
dc.identifier.citedreferenceK. S. Vecchio, JOM 2005, 57, 25.
dc.identifier.citedreferenceB. Vieille, V. M. Casado, C. Bouvet, presented at 15th European Conf. Composite Materials, Venice, Italy, June 2012.
dc.identifier.citedreferenceM. Tanoglu, S. McKnight, G. Palmese, J. Gillespie Jr, Compos. Sci. Technol. 2001, 61, 205.
dc.identifier.citedreferenceM. M. Ansari, A. Chakrabarti, Procedia Eng. 2017, 173, 161.
dc.identifier.citedreferenceW. Goldsmith, C. K. H. Dharan, H. Chang, Int. J. Solids Struct. 1995, 32, 89.
dc.identifier.citedreferenceK. K. Chawla, Composites 1989, 20, 286.
dc.identifier.citedreferenceB. L. Lee, T. F. Walsh, S. T. Won, H. M. Patts, J. W. Song, A. H. Mayer, J. Compos. Mater. 2001, 35, 1605.
dc.identifier.citedreferenceR. L. Gorowara, W. E. Kosik, S. H. McKnight, R. L. McCullough, Composites, Part A 2001, 32, 323.
dc.identifier.citedreferenceZ. Dai, F. Shi, B. Zhang, M. Li, Z. Zhang, Appl. Surf. Sci. 2011, 257, 6980.
dc.identifier.citedreferenceJ.â K. Kim, Y. W. Mai, Engineered Interfaces in Fiber Reinforced Composites (Eds: J.â K. Kim, Y.â W. Mai ), Elsevier Sciences, New York 1998.
dc.identifier.citedreferenceB. Gao, R. Zhang, F. Gao, M. He, C. Wang, L. Liu, L. Zhao, H. Cui, Langmuir 2016, 32, 8339.
dc.identifier.citedreferenceS. P. Sharma, S. C. Lakkad, Composites, Part A 2015, 69, 124.
dc.identifier.citedreferenceC. Fernández, C. Medina, G. Pincheira, C. Canales, P. Flores, Composites, Part B 2013, 55, 421.
dc.identifier.citedreferenceW. J. Staszewski, S. Mahzan, R. Traynor, Compos. Sci. Technol. 2009, 69, 1678.
dc.identifier.citedreferenceE. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.â W. Chou, M. E. Itkis, R. C. Haddon, Langmuir 2007, 23, 3970.
dc.identifier.citedreferenceW. B. Downs, R. T. K. Bakera, J. Mater. Res. 1995, 10, 625.
dc.identifier.citedreferenceA. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. van Vuure, S. V. Lomov, I. Verpoest, Compos. Sci. Technol. 2010, 70, 1346.
dc.identifier.citedreferenceJ. Gibson, J. McKee, G. Freihofer, S. Raghavan, J. Gou, Int. J. Smart Nano Mater. 2013, 4, 212.
dc.identifier.citedreferenceG. J. Ehlert, H. A. Sodano, ACS Appl. Mater. Interfaces 2009, 1, 1827.
dc.identifier.citedreferenceY. Lin, G. Ehlert, H. A. Sodano, Adv. Funct. Mater. 2009, 19, 2654.
dc.identifier.citedreferenceG. J. Ehlert, U. Galan, H. A. Sodano, ACS Appl. Mater. Interfaces 2013, 5, 635.
dc.identifier.citedreferenceL. Groo, D. J. Inman, H. A. Sodano, Adv. Funct. Mater. 2018, 28, 1802846.
dc.identifier.citedreferenceU. Galan, Y. Lin, G. J. Ehlert, H. A. Sodano, Compos. Sci. Technol. 2011, 71, 946.
dc.identifier.citedreferenceM. H. Malakooti, Z. Zhou, J. H. Spears, T. J. Shankwitz, H. A. Sodano, Adv. Mater. Interfaces 2016, 3, 1500404.
dc.identifier.citedreferenceM. H. Malakooti, H.â S. Hwang, H. A. Sodano, ACS Appl. Mater. Interfaces 2015, 7, 332.
dc.identifier.citedreferenceM. H. Malakooti, H.â S. Hwang, N. C. Goulbourne, H. A. Sodano, Composites, Part B 2017, 127, 222.
dc.identifier.citedreferenceH.â S. Hwang, M. H. Malakooti, H. A. Sodano, Composites, Part A 2015, 76, 326.
dc.identifier.citedreferenceH.â S. Hwang, M. H. Malakooti, B. A. Patterson, H. A. Sodano, Compos. Sci. Technol. 2015, 107, 75.
dc.identifier.citedreferenceH. S. Hwang, J. Nasser, H. A. Sodano, Exp. Mech. 2019, 59, 979.
dc.identifier.citedreferenceG. J. Ehlert, Ph.D. Thesis, University of Florida, 2012.
dc.identifier.citedreferenceE. D. LaBarre, X. Calderonâ Colon, M. Morris, J. Tiffany, E. Wetzel, A. Merkle, M. Trexler, J. Mater. Sci. 2015, 50, 5431.
dc.identifier.citedreferenceI. P. Giannopoulos, C. J. Burgoyne, presented at 16th National Conf. Concrete Structure, Paphos Cyprus, October 2009.
dc.identifier.citedreferenceP. J. Herreraâ Franco, L. T. Drzal, Composites 1992, 23, 2.
dc.identifier.citedreferenceP. S. Chua, M. R. Piggott, Compos. Sci. Technol. 1985, 22, 33.
dc.identifier.citedreferenceA. Gilat, R. K. Goldberg, G. D. Roberts, J. Aerosp. Eng. 2007, 20, 75.
dc.identifier.citedreferenceC. R. Siviour, J. L. Jordan, J. Dyn. Behav. Mater. 2016, 2, 15.
dc.identifier.citedreferenceT. W. Clyne, Mater. Sci. Eng., A 1989, 122, 183.
dc.identifier.citedreferenceD. R. Klimekâ McDonald, J. A. King, I. Miskioglu, E. J. Pineda, G. M. Odegard, Polym. Compos. 2018, 39, 1845.
dc.identifier.citedreferenceR. Agrawal, B. Peng, H. D. Espinosa, Nano Lett. 2009, 9, 4177.
dc.identifier.citedreferenceA. V. Desai, M. A. Haque, Sens. Actuators, A. 2007, 134, 169.
dc.identifier.citedreferenceS. Hoffmann, F. Ã stlund, J. Michler, H. J. Fan, M. Zacharias, S. H. Christiansen, C. Ballif, Nanotechnology 2007, 18, 205503.
dc.identifier.citedreferenceL. Zhang, X. Tian, M. H. Malakooti, H. A. Sodano, Compos. Sci. Technol. 2018, 168, 96.
dc.identifier.citedreferenceR. Das, C. Melchior, K. M. Karumbaiah, in Adv. Compos. Mater. Aerosp. Eng., Elsevier 2016, pp. 333 â 364.
dc.identifier.citedreferenceK. Marshiya, W. Zhang, Composites, Part A 2007, 38, 1116.
dc.identifier.citedreferenceS. Hayes, W. Zhang, M. Branthwaite, F. Jones, J. R. Soc., Interface 2007, 4, 381.
dc.identifier.citedreferenceY. Yang, L. Tang, H. Li, Smart Mater. Struct. 2009, 18, 115025.
dc.identifier.citedreferenceM. H. Malakooti, B. A. Patterson, H.â S. Hwang, H. A. Sodano, Energy Environ. Sci. 2016, 9, 634.
dc.identifier.citedreferenceM. Aureli, C. Prince, M. Porfiri, S. D. Peterson, Smart Mater. Struct. 2010, 19, 015003.
dc.identifier.citedreferenceJ. Nunesâ Pereira, V. Sencadas, V. Correia, J. G. Rocha, S. Lancerosâ Méndez, Sens. Actuators, A. 2013, 196, 55.
dc.identifier.citedreferenceC. Li, E. T. Thostenson, T.â W. Chou, Compos. Sci. Technol. 2008, 68, 1227.
dc.identifier.citedreferenceH.â K. Kang, D.â H. Kang, H.â J. Bang, C.â S. Hong, C.â G. Kim, Smart Mater. Struct. 2002, 11, 279.
dc.identifier.citedreferenceS. Wang, D. D. L. Chung, Carbon 2006, 44, 2739.
dc.identifier.citedreferenceI. Kang, M. J. Schulz, J. H. Kim, V. Shanov, D. Shi, Smart Mater. Struct. 2006, 15, 737.
dc.identifier.citedreferenceY. Zou, L. Tong, G. P. Steven, J. Sound Vib. 2000, 230, 357.
dc.identifier.citedreferenceK. Diamanti, C. Soutis, Prog. Aeronaut. Sci. 2010, 46, 342.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.