Show simple item record

A recurrent GARS mutation causes distal hereditary motor neuropathy

dc.contributor.authorLee, Diana C.
dc.contributor.authorMeyer‐schuman, Rebecca
dc.contributor.authorBacon, Chelsea
dc.contributor.authorShy, Michael E.
dc.contributor.authorAntonellis, Anthony
dc.contributor.authorScherer, Steven S.
dc.date.accessioned2020-01-13T15:16:44Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:16:44Z
dc.date.issued2019-12
dc.identifier.citationLee, Diana C.; Meyer‐schuman, Rebecca ; Bacon, Chelsea; Shy, Michael E.; Antonellis, Anthony; Scherer, Steven S. (2019). "A recurrent GARS mutation causes distal hereditary motor neuropathy." Journal of the Peripheral Nervous System 24(4): 320-323.
dc.identifier.issn1085-9489
dc.identifier.issn1529-8027
dc.identifier.urihttps://hdl.handle.net/2027.42/153067
dc.description.abstractWe found a p.Gly327Arg mutation in GARS in two unrelated women, both of whom had a similar phenotype â motor weakness that began in late childhood, distal weakness in the arms and legs, a motor greater than sensory neuropathy with slowing of motor and not sensory conduction velocities. A de novo mutation was proven in one patient and suspected in the other. The p.Gly327Arg GARS variant did not support yeast growth in a complementation assay, showing that this variant severely impairs protein function. Thus, the p.Gly327Arg GARS mutation causes a distal motor neuropathy.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHMN
dc.subject.otherCMT
dc.subject.otheraminoacyl transferase
dc.subject.otherCharcotâ Marieâ Tooth disease
dc.titleA recurrent GARS mutation causes distal hereditary motor neuropathy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153067/1/jns12353_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153067/2/jns12353.pdf
dc.identifier.doi10.1111/jns.12353
dc.identifier.sourceJournal of the Peripheral Nervous System
dc.identifier.citedreferenceJames PA, Cader MZ, Muntoni F, Childs Aâ M, Crow YJ, Talbot K. Severe childrood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology. 2006; 67: 1710 â 1712.
dc.identifier.citedreferenceNan H, Takaki R, Hata T, et al. Novel GARS mutation presenting as autosomal dominant intermediate Charcotâ Marieâ Tooth disease. J Peripher Nerv Syst. 2018; 24: 156 â 160.
dc.identifier.citedreferenceAchilli F, Brosâ Facer V, Williams HP, et al. An ENUâ induced mutation in mouse glycylâ tRNA synthetase (GARS) causes peripheral sensory and motor phentoypes creating a model of Charcotâ Marieâ Tooth type 2D peripheral neuropathty. Dis Model Mech. 2009; 2: 359 â 373.
dc.identifier.citedreferenceSun B, Chen Z, Ling L, Yang F, Huang X. Clinical and genetic spectra of Charcotâ Marieâ Tooth disease in Chinese Han patients. J Peripher Nerv Syst. 2017; 22: 13 â 18.
dc.identifier.citedreferenceAbbott JA, Meyerâ Schuman R, Lupo V, et al. Substrate interaction defects in histidylâ tRNA synthetase linked to dominant axonal peripheral neuropathy. Hum Mutat. 2018; 39: 415 â 432.
dc.identifier.citedreferenceZhang Y, Desharnais J, Freasley SE, Beardsley GP, Boger DL, Wilson IA. Crystal structures of human GAR Tfase at low and high pH and with substrate bâ GAR. Biochemistry. 2002; 41: 14206 â 14215.
dc.identifier.citedreferenceSivakumar K, Kyriakides T, Puls I, et al. Phenotypic spectrum of disorders associated with glycylâ tRNA synthetase mutations. Brain. 2005; 128: 2304 â 3414.
dc.identifier.citedreferenceAntonellis A, Ellsworth RE, Sambuughin N, et al. Glycyl tRNA synthetase mutations in Charcotâ Marieâ Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003; 72: 1293 â 1299.
dc.identifier.citedreferenceDubourg O, Azzedine H, Ben Yaou R, et al. The G526 glycylâ tRNA synthetase gene mutation in distal hereditary motor neuropahty type V. Neurology. 2006; 66: 1721 â 1726.
dc.identifier.citedreferenceEskuri JM, Stanley CM, Moore SA, Mathews KD. Infantile onset CMT2D/dSMA V in monozygotic twins due to a mutation in the anticodonâ binding domain of GARS. J Peripher Nerv Syst. 2012; 17: 132 â 134.
dc.identifier.citedreferenceLee HJ, Park J, Nakhro K, et al. Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J Peripher Nerv Syst. 2012; 17: 418 â 421.
dc.identifier.citedreferenceSeburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW. An active dominant mutation of glycylâ tRNA synthetase causes neuropathy in an Charcot Marie tooth 2D mouse model. Neuron. 2006; 51: 715 â 726.
dc.identifier.citedreferenceAntonellis A, Green ED. The role of aminoacylâ tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet. 2008; 9: 87 â 107.
dc.identifier.citedreferenceMeyerâ Schuman R, Antonellis A. Emerging mechanisms of aminoacylâ tRNA synthetase mutations in recessive and dominant human disease. Hum Mol Genet. 2017; 26: R114 â R127.
dc.identifier.citedreferenceMcMillan HJ, Schwartzentruber J, Smith A, et al. Compound heterozygous mutations in glycylâ tRNA synthetase are a proposed cause of systemic mitochondrial disease. BMC Med Genet. 2014; 15: 36.
dc.identifier.citedreferenceOprescu SN, Chepaâ Lotrea X, Takase R, et al. Compound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat. 2017; 38: 1412 â 1420.
dc.identifier.citedreferenceTaylor RW, Pyle A, Griffin H, et al. Use of wholeâ exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014; 312: 68 â 77.
dc.identifier.citedreferenceRossor AM, Kalmar B, Greensmith L, Reilly MM. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry. 2012; 83: 6 â 14.
dc.identifier.citedreferenceMurphy SM, Herrmann DN, McDermott MP, et al. Reliability of the CMT neuropathy score (second version) in Charcotâ Marieâ Tooth disease. J Peripher Nerv Syst. 2011; 16: 191 â 198.
dc.identifier.citedreferenceOprescu SN, Griffin LB, Beg AA, Antonellis A. Predicting the pathogenicity of aminoacylâ tRNA synthetase mutations. Methods. 2017; 113: 139 â 151.
dc.identifier.citedreferenceChien CI, Chen YW, Wu YH, Chang CY, Wang TL, Wang CC. Functional substitution of a eukaryotic glycylâ tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One. 2014; 9: e94659.
dc.identifier.citedreferenceBoeke J, LaCroute F, Fink G. A positive selection for mutants lacking orotidineâ 5â ²â phosphate decarboxylase activity in yeast: 5â fluoroâ orotic acid resistance. Mol Gen Genet. 1984; 197: 345 â 346.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.