Show simple item record

Synthesis of Oligoribonucleotides Containing N6‐Alkyladenosine and 2‐Methylthio‐N6‐Alkyladenosine

dc.contributor.authorKierzek, Elzbieta
dc.contributor.authorKierzek, Ryszard
dc.date.accessioned2020-01-13T15:17:02Z
dc.date.available2020-01-13T15:17:02Z
dc.date.issued2004-06
dc.identifier.citationKierzek, Elzbieta; Kierzek, Ryszard (2004). "Synthesis of Oligoribonucleotides Containing N6‐Alkyladenosine and 2‐Methylthio‐N6‐Alkyladenosine." Current Protocols in Nucleic Acid Chemistry 17(1): 4.23.1-4.23.21.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/153079
dc.description.abstractThe N6‐alkyladenosines and 2‐methylthio‐N6‐alkyladenosines are the most common modified adenosine nucleosides, and transfer ribonucleic acids (tRNA) are particularly rich in these modified nucleosides. They are present at position 37 of the anticodon arm, and the contributions of these hypermodified nucleosides to codon‐anticodon interactions as well as to translation are significant, although they are not fully understood. This unit describes a new chemical synthesis method for oligoribonucleotides containing N6‐alkyladenosines and 2‐methylthio‐N6‐alkyladenosines via postsynthetic modifications of precursor oligoribonucleotides. To obtain oligoribonucleotides containing N6‐alkyladenosines, a precursor oligoribonucleotide carrying 6‐methylthiopurine riboside residues was used, whereas for the synthesis of oligoribonucleotides containing 2‐methylthio‐N6‐alkyladenosines, a precursor oligoribonucleotide carrying the 2‐methylthio‐6‐chloropurine riboside was applied. This allowed synthesis of modified oligoribonucleotides containing naturally occurring modified nucleosides such as N6‐isopentenyladenosine (i6A), N6‐methyladenosine (m6A), 2‐methylthio‐N6‐isopentenyladenosine (ms2i6A), and 2‐methylthio‐N6‐methyladenosine (ms2m6A), as well as several unnaturally modified adenosine derivatives.
dc.publisherAmerican Society for Microbiology Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpostsynthetic modification of oligoribonucleotides
dc.subject.otherphosphoramidites of modified nucleosides
dc.subject.other2‐methylthio‐N6‐alkyladenosine
dc.subject.otherN6‐alkyladenosine
dc.titleSynthesis of Oligoribonucleotides Containing N6‐Alkyladenosine and 2‐Methylthio‐N6‐Alkyladenosine
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153079/1/cpnc0423.pdf
dc.identifier.doi10.1002/0471142700.nc0423s17
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceKierzek, E. and Kierzek, R. 2003a. The synthesis of oligoribonucleotides containing N 6 ‐alkyladenosines and 2‐methylthio‐ N 6 ‐alkyladenosines via post‐synthetic modifications of precursor oligomers. Nucl. Acids Res. 31: 4461 ‐ 4471.
dc.identifier.citedreferenceBjörk, G.R. 1995. tRNA: Structure, biosynthesis and function. In Biosynthesis and Function of Modified Nucleosides ( D. Söll and   U. RajBhandary, eds.)pp. 165 ‐ 206. American Society for Microbiology Press, Washington, D.C.
dc.identifier.citedreferenceBoudou, V., Langridge, J., Van Aerchot, A., Hendrix, C., Millar, A., Weiss, P., and Herdewijn, P. 2000. Synthesis of the anticodon hairpin tRNA f Met containing N ‐{[9‐(β‐ D ‐ribofuranosyl)‐9 H ‐purin‐6‐yl]carbamoyl}‐ L ‐threonine. Helv. Chim. Acta 83: 152 ‐ 161.
dc.identifier.citedreferenceCava, M.P. and Levinson, M.J. 1985. Thionation reactions of Lawesson reagents. Tetrahedron 41: 5061 ‐ 5087.
dc.identifier.citedreferenceGrosjean, H., Houssier, C., Romby, P., and Marquet, R. 1998. Modulatory role of modified nucleotides in RNA loop‐loop interaction. In Modification and Editing of RNA ( H. Grosjean and   R. Benne, eds.)pp. 113 ‐ 133. American Society of Microbiology Press, Washington, D.C.
dc.identifier.citedreferenceKierzek, E. and Kierzek, R. 2003b. The thermodynamic stability of RNA duplexes and hairpins containing N 6 ‐alkyladenosines and 2‐methylthio‐ N 6 ‐alkyladenosines. Nucl. Acids Res. 31: 4472 ‐ 4480.
dc.identifier.citedreferenceMatsuda, A. 1986. A convenient method for the selective acylation of guanine nucleosides. Synthesis 5: 385 ‐ 386.
dc.identifier.citedreferenceWetzel, R. and Eckstein, F. 1975. Synthesis and reactions of 6‐methylsulfonyl‐9‐β‐ D ‐ribofuranosylpurine. J. Org. Chem. 40: 658 ‐ 660.
dc.identifier.citedreferenceSundaram, M., Crain, P.F., and Davis, D.R. 2000. Synthesis and characterization of the native anticodon domain of E. coli. Simultaneous incorporation of modified nucleosides mnm 5 s 2 U, t 6 A, and pseudouridine using phosphoramidite chemistry. J. Org. Chem. 65: 5609 ‐ 5614.
dc.identifier.citedreferenceStuart, J.W., Gdaniec, Z., Guenther, R., Marszalek, M., Sochacka, E., Malkiewicz, A., and Agris, P.F. 2000. Functional anticodon architecture of human tRNA Lys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t 6 A. Biochemistry 39: 13396 ‐ 13404.
dc.identifier.citedreferenceSochacka, E. 1998. The chemical synthesis of E.coli tRNA Lys anticodon loop fragment and its analogues. Nucleosides Nucleotides 17: 327 ‐ 338.
dc.identifier.citedreferenceSmith, M., Rammler, D.H., Goldberg, I.H., and Khorana, H.G. 1962. Studies on polynucleotides. XVI. Specific synthesis of the C3‐C5′ internucleotide linkage. Synthesis of uridyl‐(3′‐5′)‐uridine and uridyl‐(3′‐5′)‐adenosine. J. Am. Chem. Soc. 84: 430 ‐ 440.
dc.identifier.citedreferenceRobins, M.J. and Uznañski, B. 1981. Nucleic‐acid related compounds. 33. Conversions of adenosine and guanosine to 2,6‐dichloro, 2‐amino‐6‐chloro, and derived purine nucleosides. Can. J. Chem. 59: 2601 ‐ 2607.
dc.identifier.citedreferencePersson, B.C. 1993. Modification of tRNA as a regulatory device. Mol. Microbiol. 8: 1011 ‐ 1016.
dc.identifier.citedreferenceOgilvie, K.K., Beaucage, S.L., Schifman, A.L., Theriault, N.Y., and Sadana, K.L. 1978. The synthesis of oligoribonucleotides. II. The use of silyl protecting groups in nucleoside and nucleotide chemistry. VIII. Can. J. Chem. 56: 2768 ‐ 2780.
dc.identifier.citedreferenceNair, V. and Fasbender, A.J. 1993. C‐2 functionalized N6‐cyclosubstituted adenosines—highly selective agonists for the adenosine‐a1‐receptor. Tetrahedron 49: 2169 ‐ 2184.
dc.identifier.citedreferenceLimbach, P.A., Crain, P.F., and McClosky, J.A. 1994. Summary: The modified nucleosides of RNA. Nucl. Acids Res. 22: 2183 ‐ 2196.
dc.identifier.citedreferenceAdamiak, R.W., Biala, E., Grzeskowiak, K., Kierzek, R., Kraszewski, A., Markiewicz, W.T., Okupniak, J., Stawinski, J., and Wiewiórowski, M. 1978. The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N 6 ‐/ N ‐threonylcarbamoyl/‐adenosine/t 6 A/ 1. Nucl. Acids Res. 5: 1889 ‐ 1905.
dc.identifier.citedreferenceBeaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22: 1859 ‐ 1862.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.