Show simple item record

Chemistry of Minor Groove Binder–Oligonucleotide Conjugates

dc.contributor.authorKutyavin, Igor
dc.contributor.authorLokhov, Sergey
dc.contributor.authorLukhtanov, Eugene
dc.contributor.authorReed, Michael W.
dc.date.accessioned2020-01-13T15:17:29Z
dc.date.available2020-01-13T15:17:29Z
dc.date.issued2003-06
dc.identifier.citationKutyavin, Igor; Lokhov, Sergey; Lukhtanov, Eugene; Reed, Michael W. (2003). "Chemistry of Minor Groove Binder–Oligonucleotide Conjugates." Current Protocols in Nucleic Acid Chemistry 13(1): 8.4.1-8.4.21.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/153100
dc.description.abstractVarious types of minor groove binders have been attached to synthetic oligodeoxynucleotides, and the interactions of these conjugates (MB‐ODNs) with DNA are reviewed here. MB‐ODNs have enhanced DNA affinity and have improved the hybridization properties of sequence‐specific DNA probes. Short MB‐ODNs hybridize with ssDNA to give more stable DNA duplexes than unmodified ODNs with similar lengths. Mismatch discrimination of short MB‐ODNs is enhanced in comparison to longer unmodified ODNs. The stronger binding of MB‐ODNs allows for more stringent hybridization conditions to be used in DNA probe‐based assays. MB‐ODNs are especially useful in quantitative “real‐time” PCR assays since they bind efficiently during the high‐temperature primer extension cycle. The synthesis and biophysical chemistry of MB‐ODN conjugates are reviewed here. Four published structural classes of MB‐ODNs and their various dsDNA binding modes are discussed, and the well‐characterized DPI3‐type MB‐ODNs and their interactions with ssDNA target strands are described in detail.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.titleChemistry of Minor Groove Binder–Oligonucleotide Conjugates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153100/1/cpnc0804.pdf
dc.identifier.doi10.1002/0471142700.nc0804s13
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceMikheikin, A.L., Zhuze, A.L., and Zasedatelev, A.S. 2001. Molecular modelling of ligand‐DNA minor groove binding: Role of ligand‐water interactions. J. Biomol. Struct. Dyn. 19: 175 ‐ 178.
dc.identifier.citedreferenceKutyavin, I.V., Afonina, I.A., Mills, A., Gorn, V.V., Lukhtanov, E.A., Belousov, E.S., Singer, M.J., Walburger, D.K., Lokhov, S.G., Gall, A.A., Dempcy, R., Reed, M.W., Meyer, R.B., and Hedgpeth, J. 2000. 3′‐Minor groove binder‐DNA probes increase sequence specificity at PCR extension temperatures. Nucl. Acids Res. 28: 655 ‐ 661.
dc.identifier.citedreferenceKutyavin, I.V., Lokhov, S.G., Afonina, I.A., Demp‐cy, R., Gall, A.A., Gorn, V.V., Lukhtanov, E., Metcalf, M., Mills, A., Reed, M.W., Sanders, S., Shishkina, I., and Vermeulen, N.M. 2002. Reduced aggregation and improved specificity of G‐rich oligodeoxyribonucleotides containing pyrazolo[3,4‐d]pyrimidine guanine bases. Nucl. Acids Res. 30: 4952 ‐ 4959.
dc.identifier.citedreferenceLevina, A.S., Metelev, V.G., Cohen, A.S., and Zamecnik, P.C. 1996. Conjugates of minor groove DNA binders with oligonucleotides: Synthesis and properties. Antisense Nucleic Acid Drug Dev. 6: 75 ‐ 85.
dc.identifier.citedreferenceLivak, K.J., Flood, S.J., Marmaro, J., Giusti, W., and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 5: 357 ‐ 362.
dc.identifier.citedreferenceLukhtanov, E.A., Kutyavin, I.V., Gamper, H.B., and Meyer, R.B. Jr. 1995. Oligodeoxyribonucleotides with conjugated dihydropyrroloindole oligopeptides: Preparation and hybridization properties. Bioconjugate Chem. 6: 418 ‐ 426.
dc.identifier.citedreferenceLukhtanov, E.A., Kutyavin, I.V., and Meyer, R.B. 1996a. Direct, solid phase assembly of dihydropyrroloindole peptides with conjugated oligonucleotides. Bioconjugate Chem. 7: 564 ‐ 567.
dc.identifier.citedreferenceLukhtanov, E.A., Podyminogin, M.A., Kutyavin, I.V., Meyer, R.B., and Gamper, H.B. 1996b. Rapid and efficient hybridization‐triggered crosslinking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole. Nucl. Acids Res. 24: 683 ‐ 687.
dc.identifier.citedreferenceLukhtanov, E.A., Kutyavin, I.V., Gorn, V.V., Reed, M.W., Adams, A.D., Lucas, D.D., and Meyer, R.B. Jr. 1997. Sequence and structure dependence of the hybridization‐triggered reaction of oligonucleotides bearing conjugated cyclopropapyrroloindole. J. Am. Chem. Soc. 119: 6213 ‐ 6225.
dc.identifier.citedreferenceLyamichev, V., Mast, A.L., Hall, J.G., Prudent, J.R., Kaiser, M.W., Takova, T., Kwiatkowski, R.W., Sander, T.J., de Arruda, M., Arco, D.A., Neri, B.P., and Brow, M.A. 1999. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol. 17: 292 ‐ 296.
dc.identifier.citedreferenceMilesi, D., Kutyavin, I., Lukhtanov, E.A., Gorn, V.V., and Reed, M.W. 2000. Synthesis of oligonucleotide conjugates in anhydrous dimethyl sulfoxide. Methods Enzymol. 313: 164 ‐ 173.
dc.identifier.citedreferenceRajur, S.B., Robles, J., Wiederholt, K., Kuimelis, R.G., and McLaughlin, L.W. 1997. Hoechst 33258 tethered by a hexa(ethylene glycol) linker to the 5′‐termini of oligodeoxynucleotide 15‐mers: Duplex stabilization and fluorescence properties. J. Org. Chem. 62: 523 ‐ 529.
dc.identifier.citedreferenceRobles, J. and McLaughlin, L.W. 1997. DNA triplex stabilization using a tethered minor groove binding Hoechst 33258 analogue. J. Am. Chem. Soc. 119: 6014 ‐ 6021.
dc.identifier.citedreferenceRobles, J., Rajur, S.B., and McLaughlin, L.W. 1996. A parallel‐stranded DNA triplex tethering a Hoechst 363258 analogue results in complex stabilization by simultaneous major groove and minor groove binding. J. Am. Chem. Soc. 118: 5820 ‐ 5821.
dc.identifier.citedreferenceSavage, H.F.J. 1993. Water structure. In Water and Biological Macromolecules ( E. Westhof, ed.)pp. 3 ‐ 39. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceSingh, M.P., Joseph, T., Kumar, S., Bathini, Y., and Lown, J.W. 1992. Synthesis and sequence‐specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem. Res. Toxicol. 5: 597 ‐ 607.
dc.identifier.citedreferenceSinyakov, A.G., Lokhov, S.G., Kutyavin, I.V., Gamper, H.B., and Meyer, R.B. 1995. Exceptional and selective stabilization of A‐T rich DNA‐DNA duplexes by N ‐methypyrrole carboxamide peptides conjugated to oligodeoxynucleotides. J. Am. Chem. Soc. 117: 4995 ‐ 4996.
dc.identifier.citedreferenceSzewczyk, J.W., Baird, E.E., and Dervan, P.B. 1996a. Cooperative triple‐helix formation via a minor groove dimerization domain. J. Am. Chem. Soc. 118: 6778 ‐ 6779.
dc.identifier.citedreferenceSzewczyk, J.W., Baird, E.E., and Dervan, P.B. 1996b. Sequence‐specific recognition of DNA by a major and minor groove binding ligand. Angew. Chem. Int. Ed. Engl. 35: 1487 ‐ 1489.
dc.identifier.citedreferenceThuong, N. and Helene, C. 1993. Sequence‐specific recognition and modification of double‐helical DNA by olgionucleotides. Angew. Chem. 32: 666 ‐ 690.
dc.identifier.citedreferenceTyagi, S., Bratu, D.P., and Kramer, F.R. 1998. Multicolor molecular beacons for allele discrimination. Nature Biotechnol. 16: 49 ‐ 53.
dc.identifier.citedreferenceWalker, N. 2002. A technique whose time has come. Science 296: 557 ‐ 559.
dc.identifier.citedreferenceWiederholt, K., Rajur, S.B., Giuliano, J. Jr., O’Donnell, M.J., and McLaughlin, L.W. 1996. DNA‐tethered Hoechst groove binding agents: Duplex stabilization and fluorescence characteristics. J. Am. Chem. Soc. 118: 7055 ‐ 7062.
dc.identifier.citedreferenceWiederholt, K., Rajur, S.B., and McLaughlin, L.W. 1997. Oligonucleotides tethering Hoechst 33258 derivatives: Effect of the conjugation site on duplex stabilization and fluorescence properties. Bioconjugate Chem. 8: 119 ‐ 126.
dc.identifier.citedreferenceZimmer, C. and Wahnert, U. 1986. Nonintercalating DNA‐binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol. 47: 31 ‐ 112.
dc.identifier.citedreferenceAfonina, I., Kutyavin, I., Lukhtanov, E., Meyer, R.B., and Gamper, H. 1996. Sequence‐specific arrest of primer extension on single‐stranded DNA by an oligonucleotide‐minor groove binder conjugate. Proc. Natl. Acad. Sci. U.S.A. 93: 3199 ‐ 3204.
dc.identifier.citedreferenceAfonina, I., Zivarts, M., Kutyavin, I., Lukhtanov, E., Gamper, H., and Meyer, R.B. 1997. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucl. Acids Res. 25: 2657 ‐ 2660.
dc.identifier.citedreferenceAfonina, I.A., Reed, M.W., Lusby, E., Shishkina, I.G., and Belousov, Y.S. 2002. Minor groove binder‐conjugated DNA probes for quantitative DNA detection by hybridization‐triggered fluorescence. BioTechniques 32: 940 ‐ 949.
dc.identifier.citedreferenceBailly, C. and Chaires, J.B. 1998. Sequence‐specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjugate Chem. 9: 513 ‐ 538.
dc.identifier.citedreferenceBaird, E.E. and Dervan, P.B. 1996. Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids. J. Am. Chem. Soc. 118: 6141 ‐ 6146.
dc.identifier.citedreferenceBoger, D.L. and Johnson, D.S. 1995. CC‐1065 and the duocarmycins: Unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc. Natl. Acad. Sci. U.S.A. 92: 3642 ‐ 3649.
dc.identifier.citedreferenceBoger, D.L. and Zhou, J. 1993. CDPI 3 ‐enediyne and CDPI 3 ‐EDTA conjugates: A new class of DNA cleaving agents. J. Org. Chem. 58: 3018 ‐ 3024.
dc.identifier.citedreferenceBoger, D.L., Coleman, R.S., and Invergo, B.J. 1987. Studies on the total synthesis of CC‐1065: Preparation of a synthetic, simplified 3‐carbamoyl‐1,2‐dihydro‐3H‐pyrrolo[3,2‐e]indole dimer/trimer/tetramer (CDPI dimer/trimer/tetramer) and development of methodology for PDE‐I dimer methyl ester formation. J. Org. Chem. 52: 1521 ‐ 1530.
dc.identifier.citedreferenceBoger, D.L., Invergo, B.J., Coleman, R.S., Zarrinmayeh, H., Kitos, P.A., Thompson, S.C., Leong, T., and McLaughlin, L.W. 1990. A demonstration of the intrinsic importance of stabilizing hydrophobic binding and non‐covalent van der waals contacts dominant in the non‐covalent CC‐1065/B‐DNA binding. Chem. Biol. Interact. 73: 29 ‐ 52.
dc.identifier.citedreferenceBoger, D.L., Boyce, C.W., Garbaccio, R.M., and Goldberg, J.A. 1997. CC‐1065 and the duocarmycins: Synthetic studies. Chem. Rev. 97: 787 ‐ 828.
dc.identifier.citedreferenceChang, D.K. and Cheng, S.F. 1996. On the importance of van der Waals interaction in the groove binding of DNA with ligands: Restrained molecular dynamics study. Int. J. Biol. Macromol. 19: 279 ‐ 285.
dc.identifier.citedreferenceCory, M. 1995. DNA minor‐groove binding compounds as antitumor agents. Cancer Chemotherapeutic Agents: ACS Professions Reference Book Chapter 8: 311 ‐ 344.
dc.identifier.citedreferencede Kok, J.B., Wiegerinck, E.T., Giesendorf, B.A., and Swinkels, D.W. 2002. Rapid genotyping of single nucleotide polymorphisms using novel minor groove binding DNA oligonucleotides (MGB probes). Hum. Mutat. 19: 554 ‐ 559.
dc.identifier.citedreferenceDempcy, R.O., Kutyavin, I.V., Mills, A.G., Lukhtanov, E.A., and Meyer, R.B. 1999. Linkers designed to intercalate the double helix greatly facilitate DNA alkylation by triplex‐forming oligonucleotides carrying a cyclopropapyrroloindole reactive moiety. Nucl. Acids Res. 27: 2931 ‐ 2937.
dc.identifier.citedreferenceDickerson, R.E., Drew, H.R., Conner, B.N., Wing, R.M., Fratini, A.V., and Kopka, M.L. 1982. The anatomy of A‐, B‐, and Z‐DNA. Science 216: 475 ‐ 485.
dc.identifier.citedreferenceDidenko, V.V. 2001. DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. Biotechniques 31: 1106 ‐ 1121.
dc.identifier.citedreferenceInga, A., Chen, F.X., Monti, P., Aprile, A., Campomenosi, P., Menichini, P., Ottaggio, L., Viaggi, S., Abbondandolo, A., Gold, B., and Fronza, G. 1999. N ‐(2‐Chloroethyl)‐ N ‐nitrosourea tethered to lexitropsin induces minor groove lesions at the p53 cDNA that are more cytotoxic than mutagenic. Cancer Res. 59: 689 ‐ 695.
dc.identifier.citedreferenceJohansson, M.K., Fidder, H., Dick, D., and Cook, R.M. 2002. Intramolecular dimers: A new strategy to fluorescence quenching in dual‐labeled oligonucleotide probes. J. Am. Chem. Soc. 124: 6950 ‐ 6956.
dc.identifier.citedreferenceKielkopf, C.L., White, S., Szewczyk, J.W., Turner, J.M., Baird, E.E., Dervan, P.B., and Rees, D.C. 1998. A structural basis for recognition of A‐T and T‐A base pairs in the minor groove of B‐DNA. Science 282: 111 ‐ 115.
dc.identifier.citedreferenceKim, D.‐Y., Shih, D.S., Cho, D.Y., and Swenson, D.H. 1995a.x Helix‐stabilizing compounds CC‐1065 and U‐71,184 bind to RNA‐DNA and DNA‐DNA duplexes containing modified internucleotide linkages and stabilize duplexes against thermal melting. Antisense Res. Dev. 5: 49 ‐ 57.
dc.identifier.citedreferenceKim, D.‐Y., Swenson, D.H., Cho, D.Y., Taylor, H.W., and Shih, D.S. 1995b. Helix‐stabilizing agent, CC‐1065, enhances suppression of translation by an antisense oligodeoxynucleotide. Antisense Res. Dev. 5: 149 ‐ 154.
dc.identifier.citedreferenceKumar, S., Reed, M.W., Gamper, H.B., Gorn, V.V., Lukhtanov, E.A., Foti, M., West, J., Meyer, R.B., and Schweitzer, B.I. 1998. Solution structure of a highly stable DNA duplex conjugated to a minor groove binder. Nucl. Acids Res. 26: 831 ‐ 838.
dc.identifier.citedreferenceKutyavin, I.V., Lukhtanov, E.A., Gamper, H.B., and Meyer, R.B. 1997. Oligonucleotides with conjugated dihydropyrroloindole tripeptides: Base composition and backbone effects on hybridization. Nucl. Acids Res. 25: 3718 ‐ 3723.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.