Show simple item record

Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo

dc.contributor.authorBushnell, Grace G.
dc.contributor.authorRao, Shreyas S.
dc.contributor.authorHartfield, Rachel M.
dc.contributor.authorZhang, Yining
dc.contributor.authorOakes, Robert S.
dc.contributor.authorJeruss, Jacqueline S.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2020-01-13T15:17:47Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:17:47Z
dc.date.issued2020-01
dc.identifier.citationBushnell, Grace G.; Rao, Shreyas S.; Hartfield, Rachel M.; Zhang, Yining; Oakes, Robert S.; Jeruss, Jacqueline S.; Shea, Lonnie D. (2020). "Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo." Biotechnology and Bioengineering 117(1): 210-222.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/153114
dc.description.abstractMetastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression. Lentivirus delivered from scaffolds in vivo achieved sustained transgene expression for 56 days. IL10 lentiviral expression, but not CXCL12 or CCL2, significantly decreased tumor cell recruitment to scaffolds in vivo. Delivery of CXCL12 enhanced CD45+ immune cell recruitment to scaffolds while delivery of IL10 reduced immune cell recruitment. CCL2 did not alter immune cell recruitment. Tumor cell phenotype was investigated using conditioned media from immunomodulated scaffolds, with CXCL12 microenvironments reducing proliferation, and IL10 microenvironments enhancing proliferation. Migration was enhanced with CCL2 and reduced with IL10‐driven microenvironments. Multiple linear regression identified populations of immune cells associated with tumor cell abundance. CD45+ immune and CD8+ T cells were associated with reduced tumor cell abundance, while CD11b+Gr1+ neutrophils and CD4+ T cells were associated with enhanced tumor cell abundance. Collectively, biomaterial scaffolds provide a tool to probe the formation and function of the premetastatic niche.Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlentivirus
dc.subject.othermetastasis detection
dc.subject.othermetastasis
dc.subject.otherbiomaterial
dc.subject.otherimmunomodulation
dc.titleMicroporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/1/bit27179.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/2/bit27179_am.pdf
dc.identifier.doi10.1002/bit.27179
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceLiang, W., & Ferrara, N. ( 2016 ). The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunology Research, 4 ( 2 ), 83 – 91.
dc.identifier.citedreferencePeinado, H., Lavotshkin, S., & Lyden, D. ( 2011 ). The secreted factors responsible for pre‐metastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology, 21 ( 2 ), 139 – 146.
dc.identifier.citedreferenceBoehler, R. M., Kuo, R., Shin, S., Goodman, A. G., Pilecki, M. A., Leonard, J. N., & Shea, L. D. ( 2014 ). Lentivirus delivery of IL‐10 to promote and sustain macrophage polarization towards an anti‐inflammatory phenotype. Biotechnology and Bioengineering, 111 ( 6 ), 1210 – 1221.
dc.identifier.citedreferenceBushnell, G. G., Hardas, T. P., Hartfield, R. M., Zhang, Y., Oakes, R. S., Ronquist, S., … Shea, L. D. ( 2019 ). Biomaterial scaffolds recruit an aggressive population of metastatic tumor cells in vivo. Cancer Research, 79, 2042 – 2053. https://doi.org/10.1158/0008‐5472.can‐18‐2502. 2502.2018
dc.identifier.citedreferenceCarpenter, R. A., Kwak, J. G., Peyton, S. R., & Lee, J. ( 2018 ). Implantable pre‐metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nature Biomedical Engineering, 2 ( 12 ), 915 – 929.
dc.identifier.citedreferenceChaffer, C. L., & Weinberg, R. A. ( 2011 ). A perspective on cancer cell metastasis. Science, 331 ( 6024 ), 1559 – 1564.
dc.identifier.citedreferenceCrusz, S. M., & Balkwill, F. R. ( 2015 ). Inflammation and cancer: Advances and new agents. Nature Reviews Clinical Oncology, 12 ( 10 ), 584 – 596.
dc.identifier.citedreferenceDeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. ( 2009 ). CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16 ( 2 ), 91 – 102.
dc.identifier.citedreferenceDe Falco, E. ( 2004 ). SDF‐1 involvement in endothelial phenotype and ischemia‐induced recruitment of bone marrow progenitor cells. Blood, 104 ( 12 ), 3472 – 3482.
dc.identifier.citedreferencede la Fuente, A., Alonso‐Alconada, L., Costa, C., Cueva, J., Garcia‐Caballero, T., Lopez‐Lopez, R., & Abal, M. ( 2015 ). M‐Trap: Exosome‐based capture of tumor cells as a new technology in peritoneal metastasis. Journal of the National Cancer Institute, 107 ( 9 ), djv184. https://doi.org/10.1093/jnci/djv184
dc.identifier.citedreferenceGaldiero, M. R., Marone, G., & Mantovani, A. ( 2018 ). Cancer inflammation and cytokines. Cold Spring Harbor Perspectives in Biology, 10 ( 8 ), a028662.
dc.identifier.citedreferenceGower, R. M., Boehler, R. M., Azarin, S. M., Ricci, C. F., Leonard, J. N., & Shea, L. D. ( 2014 ). Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL‐10 expression. Biomaterials, 35 ( 6 ), 2024 – 2031.
dc.identifier.citedreferenceKaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., … Lyden, D. ( 2005 ). VEGFR1‐positive haematopoietic bone marrow progenitors initiate the pre‐metastatic niche. Nature, 438 ( 7069 ), 820 – 827.
dc.identifier.citedreferenceKitamura, T., Qian, B. ‐Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., … Pollard, J. W. ( 2015 ). CCL2‐induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis‐associated macrophages. The Journal of Experimental Medicine, 212 ( 7 ), 1043 – 1059.
dc.identifier.citedreferenceKo, C. Y., Wu, L., Nair, A. M., Tsai, Y. T., Lin, V. K., & Tang, L. ( 2012 ). The use of chemokine‐releasing tissue engineering scaffolds in a model of inflammatory response‐mediated melanoma cancer metastasis. Biomaterials, 33 ( 3 ), 876 – 885.
dc.identifier.citedreferenceKucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska‐Wieczorek, A., … Ratajczak, M. Z. ( 2005 ). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF‐1–CXCR4 axis. Stem Cells, 23 ( 7 ), 879 – 894.
dc.identifier.citedreferenceKundu, N., Beaty, T. L., Jackson, M. J., & Fulton, A. M. ( 1996 ). Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. JNCI Journal of the National Cancer Institute, 88 ( 8 ), 536 – 541.
dc.identifier.citedreferenceLee, J., Li, M., Milwid, J., Dunham, J., Vinegoni, C., Gorbatov, R., … Parekkadan, B. ( 2012 ). Implantable microenvironments to attract hematopoietic stem/cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 48 ), 19638 – 19643.
dc.identifier.citedreferenceLee, Y., Auh, S. L., Wang, Y., Burnette, B., Wang, Y., Meng, Y., … Fu, Y. X. ( 2009 ). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood, 114 ( 3 ), 589 – 595.
dc.identifier.citedreferenceLiu, J. M. H., Zhang, J., Zhang, X., Hlavaty, K. A., Ricci, C. F., Leonard, J. N., … Gower, R. M. ( 2016 ). Transforming growth factor‐beta 1 delivery from microporous scaffolds decreases inflammation post‐implant and enhances function of transplanted islets. Biomaterials, 80, 11 – 19.
dc.identifier.citedreferenceLuo, Y. ( 2006 ). Targeting tumor‐associated macrophages as a novel strategy against breast cancer. Journal of Clinical Investigation, 116 ( 8 ), 2132 – 2141.
dc.identifier.citedreferenceOlkhanud, P. B., Damdinsuren, B., Bodogai, M., Gress, R. E., Sen, R., Wejksza, K., … Biragyn, A. ( 2011 ). Tumor‐evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T‐regulatory cells. Cancer Research, 71, 3505 – 3515.
dc.identifier.citedreferenceOrimo, A., Gupta, P. B., Sgroi, D. C., Arenzana‐Seisdedos, F., Delaunay, T., Naeem, R., … Weinberg, R. A. ( 2005 ). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF‐1/CXCL12 secretion. Cell, 121 ( 3 ), 335 – 348.
dc.identifier.citedreferencePaget, S. ( 1889 ). The distribution of secondary growths in cancer of the breast. The Lancet, 133 ( 3421 ), 571 – 573.
dc.identifier.citedreferencePeinado, H., Zhang, H., Matei, I. R., Costa‐Silva, B., Hoshino, A., Rodrigues, G., … Lyden, D. ( 2017 ). Pre‐metastatic niches: Organ‐specific homes for metastases. Nature Reviews Cancer, 17 ( 5 ), 302 – 317.
dc.identifier.citedreferenceQian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., … Pollard, J. W. ( 2011 ). CCL2 recruits inflammatory monocytes to facilitate breast‐tumour metastasis. Nature, 475 ( 7355 ), 222 – 225.
dc.identifier.citedreferenceRao, S. S., Bushnell, G. G., Azarin, S. M., Spicer, G., Aguado, B. A., Stoehr, J. R., … Jeruss, J. S. ( 2016 ). Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Research, 76 ( 18 ), 5209 – 5218.
dc.identifier.citedreferenceSeib, F. P., Berry, J. E., Shiozawa, Y., Taichman, R. S., & Kaplan, D. L. ( 2015 ). Tissue engineering a surrogate niche for metastatic cancer cells. Biomaterials, 51, 313 – 319.
dc.identifier.citedreferenceSempertegui, N. D., Narkhede, A. A., Thomas, V., & Rao, S. S. ( 2018 ). A combined compression molding, heating, and leaching process for fabrication of micro‐porous poly (ε‐caprolactone) scaffolds. Journal of Biomaterials Science, Polymer Edition, 29 ( 16 ), 1978 – 1993.
dc.identifier.citedreferenceSeyfried, T. N., & Huysentruyt, L. C. ( 2013 ). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18 ( 1‐2 ), 43 – 73.
dc.identifier.citedreferenceTeicher, B. A., & Fricker, S. P. ( 2010 ). CXCL12 (SDF‐1)/CXCR4 pathway in cancer. Clinical Cancer Research, 16, 2927 – 2931. 1078‐0432. CCR‐1009‐2329.
dc.identifier.citedreferenceWilliams, S. A., Harata‐Lee, Y., Comerford, I., Anderson, R. L., Smyth, M. J., & McColl, S. R. ( 2010 ). Multiple functions of CXCL12 in a syngeneic model of breast cancer. Molecular Cancer, 9 ( 1 ), 250.
dc.identifier.citedreferenceYoun, J. I., & Gabrilovich, D. I. ( 2010 ). The biology of myeloid‐derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 40 ( 11 ), 2969 – 2975.
dc.identifier.citedreferenceZlotnik, A., & Yoshie, O. ( 2000 ). Chemokines. Immunity, 12 ( 2 ), 121 – 127.
dc.identifier.citedreferenceAguado, B. A., Bushnell, G. G., Rao, S. S., Jeruss, J. S., & Shea, L. D. ( 2017 ). Engineering the pre‐metastatic niche. Nature Biomedical Engineering, 1 ( 6 ), 0077.
dc.identifier.citedreferenceAguado, B. A., Caffe, J. R., Nanavati, D., Rao, S. S., Bushnell, G. G., Azarin, S. M., & Shea, L. D. ( 2016 ). Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre‐metastatic niche. Acta Biomaterialia, 33, 13 – 24.
dc.identifier.citedreferenceAguado, B. A., Hartfield, R. M., Bushnell, G. G., Decker, J. T., Azarin, S. M., Nanavati, D., … Shea, L. D. ( 2018 ). Biomaterial scaffolds as pre‐metastatic niche mimics systemically alter the primary tumor and tumor microenvironment. Advanced Healthcare Materials, 7, 1700903.
dc.identifier.citedreferenceAguado, B. A., Wu, J. J., Azarin, S. M., Nanavati, D., Rao, S. S., Bushnell, G. G., … Shea, L. D. ( 2015 ). Secretome identification of immune cell factors mediating metastatic cell homing. Scientific Reports, 5, 17566.
dc.identifier.citedreferenceAzarin, S. M., Yi, J., Gower, R. M., Aguado, B. A., Sullivan, M. E., Goodman, A. G., … Shea, L. D. ( 2015 ). In vivo capture and label‐free detection of early metastatic cells. Nature Communications, 6, 8094.
dc.identifier.citedreferenceBersani, F., Lee, J., Yu, M., Morris, R., Desai, R., Ramaswamy, S., … Parekkadan, B. ( 2014 ). Bioengineered implantable scaffolds as a tool to study stromal‐derived factors in metastatic cancer models. Cancer Research, 74, 7229 – 7238.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.