Show simple item record

Global Ten‐Moment Multifluid Simulations of the Solar Wind Interaction with Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere

dc.contributor.authorDong, Chuanfei
dc.contributor.authorWang, Liang
dc.contributor.authorHakim, Ammar
dc.contributor.authorBhattacharjee, Amitava
dc.contributor.authorSlavin, James A.
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorGermaschewski, Kai
dc.date.accessioned2020-01-13T15:17:54Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:17:54Z
dc.date.issued2019-11-16
dc.identifier.citationDong, Chuanfei; Wang, Liang; Hakim, Ammar; Bhattacharjee, Amitava; Slavin, James A.; DiBraccio, Gina A.; Germaschewski, Kai (2019). "Global Ten‐Moment Multifluid Simulations of the Solar Wind Interaction with Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere." Geophysical Research Letters 46(21): 11584-11596.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/153116
dc.description.abstractFor the first time, we explore the tightly coupled interior‐magnetosphere system of Mercury by employing a three‐dimensional ten‐moment multifluid model. This novel fluid model incorporates the nonideal effects including the Hall effect, electron inertia, and tensorial pressures that are critical for collisionless magnetic reconnection; therefore, it is particularly well suited for investigating collisionless magnetic reconnection in Mercury’s magnetotail and at the planet’s magnetopause. The model is able to reproduce the observed magnetic field vectors, field‐aligned currents, and cross‐tail current sheet asymmetry (beyond magnetohydrodynamic approach), and the simulation results are in good agreement with spacecraft observations. We also study the magnetospheric response of Mercury to a hypothetical extreme event with an enhanced solar wind dynamic pressure, which demonstrates the significance of induction effects resulting from the electromagnetically coupled interior. More interestingly, plasmoids (or flux ropes) are formed in Mercury’s magnetotail during the event, indicating the highly dynamic nature of Mercury’s magnetosphere.Key PointsThe new model can reproduce observations beyond MHD including dawn‐dusk asymmetries in Mercury’s magnetotail and field‐aligned currentsThe new model is essential for capturing the electron physics associated with collisionless magnetic reconnection in Mercury’s magnetosphereThe induction response arising from the electromagnetically coupled interior plays an important role in solar wind‐Mercury interaction
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetotail asymmetry
dc.subject.otherinduction response from Mercury’s conducting core
dc.subject.otherMercury’s dynamic magnetosphere
dc.subject.otherten‐moment multifluid model
dc.subject.othercollisionless magnetic reconnection and flux ropes
dc.subject.otherfield‐aligned current
dc.titleGlobal Ten‐Moment Multifluid Simulations of the Solar Wind Interaction with Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153116/1/grl59657_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153116/2/grl59657.pdf
dc.identifier.doi10.1029/2019GL083180
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRicher, E., Modolo, R., Chanteur, G. M., Hess, S., & Leblanc, F. ( 2012 ). A global hybrid model for Mercury’s interaction with the solar wind: Case study of the dipole representation. Journal of Geophysical Research, 117, A10228. https://doi.org/10.1029/2012JA017898
dc.identifier.citedreferenceNess, N. F., Behannon, K. W., Lepping, R. P., & Whang, Y. C. ( 1975 ). The magnetic field of Mercury. I. Journal of Geophysical Research, 80, 2708 – 2716. https://doi.org/10.1029/JA080i019p02708
dc.identifier.citedreferenceNess, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., & Schatten, K. H. ( 1974 ). Magnetic field observations near mercury: Preliminary results from mariner 10. Science, 185, 151 – 160. https://doi.org/10.1126/science.185.4146.151
dc.identifier.citedreferenceNg, J., Hakim, A., & Bhattacharjee, A. ( 2018 ). Using the maximum entropy distribution to describe electrons in reconnecting current sheets. Physics of Plasmas, 25 ( 8 ), 82113. https://doi.org/10.1063/1.5041758
dc.identifier.citedreferenceNg, J., Hakim, A., Bhattacharjee, A., Stanier, A., & Daughton, W. ( 2017 ). Simulations of anti‐parallel reconnection using a nonlocal heat flux closure. Physics of Plasmas, 24 ( 8 ), 82112. https://doi.org/10.1063/1.4993195
dc.identifier.citedreferenceNg, J., Hakim, A., Juno, J., & Bhattacharjee, A. ( 2019 ). Drift instabilities in thin current sheets using a two‐fluid model with pressure tensor effects. Journal of Geophysical Research: Space Physics, 124, 3331 – 3346. https://doi.org/10.1029/2018JA026313
dc.identifier.citedreferenceNg, J., Huang, Y.‐M., Hakim, A., Bhattacharjee, A., Stanier, A., Daughton, W., Wang, L., & Germaschewski, K. ( 2015 ). The island coalescence problem: Scaling of reconnection in extended fluid models including higher‐order moments. Physics of Plasmas, 22 ( 11 ), 112104. https://doi.org/10.1063/1.4935302
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., Imber, S. M., Gershman, D. J., Sun, W.‐J., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., & Solomon, S. C. ( 2016 ). MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 121, 8260 – 8285. https://doi.org/10.1002/2016JA022552
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017 ). Coupling between Mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in mercury’s magnetosphere. Science, 324, 606. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.‐H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves‐Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of a flux‐transfer‐event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Krimigis, S. M., Acuña, M. H., Anderson, B. J., Baker, D. N., Koehn, P. L., Korth, H., Livi, S., Mauk, B. H., Solomon, S. C., & Zurbuchen, T. H. ( 2007 ). MESSENGER: Exploring Mercury’s magnetosphere. Space Science Reviews, 131, 133 – 160. https://doi.org/10.1007/s11214-007-9154-x
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W.‐J., Livi, S., Imber, S. M., Poh, G.‐K., Akhavan‐Tafti, M., Jasinski, J. M., DiBraccio, G. A., Dong, C., Dewey, R. M., & Mays, M. L. ( 2019 ). Messenger observations of disappearing dayside magnetosphere events at Mercury, 124, 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSmith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.‐L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W., & Taylor, A. H. ( 2012 ). Gravity field and internal structure of mercury from MESSENGER. Science, 336, 214. https://doi.org/10.1126/science.1218809
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q.‐G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z., & Zurbuchen, T. H. ( 2015 ). MESSENGER observations of alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 – 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSundberg, T., Boardsen, S. A., Slavin, J. A., Blomberg, L. G., & Korth, H. ( 2010 ). The Kelvin‐Helmholtz instability at Mercury: An assessment. Planetary and Space Science, 58, 1434 – 1441. https://doi.org/10.1016/j.pss.2010.06.008
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceTenBarge, J., Ng, J., Juno, J., Wang, L., Hakim, A., & Bhattacharjee, A. ( 2019 ). An extended MHD study of the 16 October 2015 MMS diffusion region crossing. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026731
dc.identifier.citedreferenceTóth, G., Jia, X., Markidis, S., Peng, I. B., Chen, Y., Daldorff, L. K. S., Tenishev, V. M., Borovikov, D., Haiducek, J. D., Gombosi, T. I., Glocer, A., & Dorelli, J. C. ( 2016 ). Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere. Journal of Geophysical Research: Space Physics, 121, 1273 – 1293. https://doi.org/10.1002/2015JA021997
dc.identifier.citedreferenceTrávníček, P. M., Schriver, D., Hellinger, P., Herčík, D., Anderson, B. J., Sarantos, M., & Slavin, J. A. ( 2010 ). Mercury’s magnetosphere‐solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus, 209, 11 – 22. https://doi.org/10.1016/j.icarus.2010.01.008
dc.identifier.citedreferenceWang, L., Germaschewski, K., Hakim, A., Dong, C., Raeder, J., & Bhattacharjee, A. ( 2018 ). Electron physics in 3‐D two‐fluid 10‐moment modeling of Ganymede’s magnetosphere. Journal of Geophysical Research: Space Physics, 123, 2815 – 2830. https://doi.org/10.1002/2017JA024761
dc.identifier.citedreferenceWang, L., Hakim, A. H., Bhattacharjee, A., & Germaschewski, K. ( 2015 ). Comparison of multi‐fluid moment models with particle‐in‐cell simulations of collisionless magnetic reconnection. Physics of Plasmas, 22 ( 1 ), 12108. https://doi.org/10.1063/1.4906063
dc.identifier.citedreferenceWang, L., Hakim, A., Ng, J., Dong, C., & Germaschewski, K. ( 2019 ). Exact and locally implicit source term solvers for multifluid‐Maxwell systems. arXiv e‐prints, arXiv: 1909.04125.
dc.identifier.citedreferenceWilson, F., Neukirch, T., Hesse, M., Harrison, M. G., & Stark, C. R. ( 2016 ). Particle‐in‐cell simulations of collisionless magnetic reconnection with a non‐uniform guide field. Physics of Plasmas, 23 ( 3 ), 32302. https://doi.org/10.1063/1.4942939
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceZhong, J., Wan, W. X., Wei, Y., Slavin, J. A., Raines, J. M., Rong, Z. J., Chai, L. H., & Han, X. H. ( 2015 ). Compressibility of Mercury’s dayside magnetosphere. Geophysical Research Letters, 42, 10,135 – 10,139. https://doi.org/10.1002/2015GL067063
dc.identifier.citedreferenceZweibel, E. G., & Yamada, M. ( 2009 ). Magnetic reconnection in astrophysical and laboratory plasmas. Annual Review of Astronomy and Astrophysics, 47, 291 – 332. https://doi.org/10.1146/annurev-astro-082708-101726
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of mercury from MESSENGER orbital observations. Science, 333, 1859. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., McNutt, R. L., & Solomon, S. C. ( 2014 ). Steady‐state field‐aligned currents at Mercury. Geophysical Research Letters, 41, 7444 – 7452. https://doi.org/10.1002/2014GL061677
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, v, Slavin, J. A., Solomon, S. C., Zuber, M. T., & McNutt, R. L. Jr. ( 2012 ). Low‐degree structure in Mercury’s planetary magnetic field. Journal of Geophysical Research, 117, E00L12. https://doi.org/10.1029/2012JE004159
dc.identifier.citedreferenceBenkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., & Ziethe, R. ( 2010 ). Bepicolombo—Comprehensive exploration of Mercury: Mission overview and science goals. Planetary and Space Science, 58, 2 – 20. https://doi.org/10.1016/j.pss.2009.09.020
dc.identifier.citedreferenceComisso, L., Lingam, M., Huang, Y.‐M., & Bhattacharjee, A. ( 2016 ). General theory of the plasmoid instability. Physics of Plasmas, 100702 ( 10 ). https://doi.org/10.1063/1.4964481
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDibraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDivin, A., Semenov, V., Korovinskiy, D., Markidis, S., Deca, J., Olshevsky, V., & Lapenta, G. ( 2016 ). A new model for the electron pressure nongyrotropy in the outer electron diffusion region. Geophysical Research Letters, 43, 10,565 – 10,573. https://doi.org/10.1002/2016GL070763
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Lee, Y., Toth, G., Nagy, A. F., Fang, X., Luhmann, J., Liemohn, M. W., Halekas, J. S., Tenishev, V., Pawlowski, D. J., & Combi, M. R. ( 2018a ). Solar wind interaction with the martian upper atmosphere: Roles of the cold thermosphere and hot oxygen corona. Journal of Geophysical Research: Space Physics, 123, 6639 – 6654. https://doi.org/10.1029/2018JA025543
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Lee, Y., Nagy, A. F., Tenishev, V., Pawlowski, D. J., Combi, M. R., & Najib, D. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Nagy, A. F., & Najib, D. ( 2014 ). Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model. Geophysical Research Letters, 41, 2708 – 2715. https://doi.org/10.1002/2014GL059515
dc.identifier.citedreferenceDong, C., Huang, Z., & Lingam, M. ( 2019 ). Role of planetary obliquity in regulating atmospheric escape: G‐dwarf versus M‐dwarf Earth‐like exoplanets. The Astrophysical Journal Letters, 882, L16. https://doi.org/10.3847/2041-8213/ab372c
dc.identifier.citedreferenceDong, C., Huang, Z., Lingam, M., Tóth, G., Gombosi, T., & Bhattacharjee, A. ( 2017b ). The dehydration of water worlds via atmospheric losses. The Astrophysical Journal, 847, L4. https://doi.org/10.3847/2041-8213/aa8a60
dc.identifier.citedreferenceDong, C., Jin, M., Lingam, M., Airapetian, V. S., Ma, Y., & van der Holst, B. ( 2018c ). Atmospheric escape from the TRAPPIST‐1 planets and implications for habitability. Proceedings of the National Academy of Sciences, 115, 260 – 265. https://doi.org/10.1073/pnas.1708010115
dc.identifier.citedreferenceDong, C., Lee, Y., Ma, Y., Lingam, M., Bougher, S., Luhmann, J., Curry, S., Toth, G., Nagy, A., Tenishev, V., Fang, X., Mitchell, D., Brain, D., & Jakosky, B. ( 2018b ). Modeling Martian atmospheric losses over time: Implications for exoplanetary climate evolution and habitability. The Astrophysical Journal Letters, 859, L14. https://doi.org/10.3847/2041-8213/aac489
dc.identifier.citedreferenceDong, C., Lingam, M., Ma, Y., & Cohen, O. ( 2017a ). Is Proxima Centauri b Habitable? A study of atmospheric loss. The Astrophysical Journal, 837 ( 2 ), L26. https://doi.org/10.3847/2041-8213/aa6438
dc.identifier.citedreferenceDong, C., Wang, L., Bhattacharjee, A., Hakim, A., Huang, Y.‐M., & Germaschewski, K. ( 2016 ). Magnetic reconnection in multispecies plasmas investigated by a kinetic fluid code. In in APS Meeting Abstracts. NO7.009.
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131, 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceExner, W., Heyner, D., Liuzzo, L., Motschmann, U., Shiota, D., Kusano, K., & Shibayama, T. ( 2018 ). Coronal mass ejection hits mercury: A.I.K.E.F. hybrid‐code results compared to MESSENGER data. Planetary and Space Science, 153, 89 – 99. https://doi.org/10.1016/j.pss.2017.12.016
dc.identifier.citedreferenceGershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Sundberg, T., Boardsen, S. A., Anderson, B. J., Korth, H., & Solomon, S. C. ( 2015 ). MESSENGER observations of multiscale Kelvin‐Helmholtz vortices at Mercury. Journal of Geophysical Research: Space Physics, 120, 4354 – 4368. https://doi.org/10.1002/2014JA020903
dc.identifier.citedreferenceGrosser, J., Glassmeier, K.‐H., & Stadelmann, A. ( 2004 ). Induced magnetic field effects at planet Mercury. Planetary and Space Science, 52, 1251 – 1260. https://doi.org/10.1016/j.pss.2004.08.005
dc.identifier.citedreferenceHakim, A. H. ( 2008 ). Extended mhd modelling with the ten‐moment equations. Journal of Fusion Energy, 27 ( 1 ), 36 – 43. https://doi.org/10.1007/s10894-007-9116-z
dc.identifier.citedreferenceHakim, A., Loverich, J., & Shumlak, U. ( 2006 ). A high resolution wave propagation scheme for ideal two‐fluid plasma equations. Journal of Computational Physics, 219, 418 – 442. https://doi.org/10.1016/j.jcp.2006.03.036
dc.identifier.citedreferenceHammett, G. W., & Perkins, F. W. ( 1990 ). Fluid moment models for Landau damping with application to the ion‐temperature‐gradient instability. Physical Review Letters, 64, 3019 – 3022. https://doi.org/10.1103/PhysRevLett.64.3019
dc.identifier.citedreferenceHauck, S. A., Margot, J.‐L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E., & Zuber, M. T. ( 2013 ). The curious case of Mercury’s internal structure. Journal of Geophysical Research: Planets, 118, 1204 – 1220. https://doi.org/10.1002/jgre.20091
dc.identifier.citedreferenceHeyner, D., Nabert, C., Liebert, E., & Glassmeier, K.‐H. ( 2016 ). Concerning reconnection‐induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121, 2935 – 2961. https://doi.org/10.1002/2015JA021484
dc.identifier.citedreferenceHood, L., & Schubert, G. ( 1979 ). Inhibition of solar wind impingement on Mercury by planetary induction currents. Journal of Geophysical Research, 84, 2641 – 2647. https://doi.org/10.1029/JA084iA06p02641
dc.identifier.citedreferenceHunana, P., Zank, G. P., Laurenza, M., Tenerani, A., Webb, G. M., Goldstein, M. L., Velli, M., & Adhikari, L. ( 2018 ). New closures for more precise modeling of landau damping in the fluid framework. Physical Review Letters, 121 ( 13 ), 135101. https://doi.org/10.1103/PhysRevLett.121.135101
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., Raines, J. M., & Gombosi, T. I. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceJohansson, E. P. G., Mueller, J., & Motschmann, U. ( 2011 ). Interplanetary magnetic field orientation and the magnetospheres of close‐in exoplanets. Astronomy and Astrophysics, 525, A117. https://doi.org/10.1051/0004-6361/201014802
dc.identifier.citedreferenceJohnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A., Heyner, D., Phillips, R. J., Winslow, R. M., & Solomon, S. C. ( 2016 ). MESSENGER observations of induced magnetic fields in Mercury’s core. Geophysical Research Letters, 43, 2436 – 2444. https://doi.org/10.1002/2015GL067370
dc.identifier.citedreferenceKabin, K., Heimpel, M. H., Rankin, R., Aurnou, J. M., Gómez‐Pérez, N., Paral, J., Gombosi, T. I., Zurbuchen, T. H., Koehn, P. L., & DeZeeuw, D. L. ( 2008 ). Global MHD modeling of Mercury’s magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus, 195, 1 – 15. https://doi.org/10.1016/j.icarus.2007.11.028
dc.identifier.citedreferenceKidder, A., Winglee, R. M., & Harnett, E. M. ( 2008 ). Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. Journal of Geophysical Research, 113, A09223. https://doi.org/10.1029/2008JA013038
dc.identifier.citedreferenceLedvina, S. A., Brecht, S. H., Brain, D. A., & Jakosky, B. M. ( 2017 ). Ion escape rates from Mars: Results from hybrid simulations compared to MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 8391 – 8408. https://doi.org/10.1002/2016JA023521
dc.identifier.citedreferenceLiljeblad, E., Sundberg, T., Karlsson, T., & Kullen, A. ( 2014 ). Statistical investigation of Kelvin‐Helmholtz waves at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 119, 9670 – 9683. https://doi.org/10.1002/2014JA020614
dc.identifier.citedreferenceLindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2016 ). MESSENGER X‐ray observations of magnetosphere‐surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005
dc.identifier.citedreferenceLingam, M., Hirvijoki, E., Pfefferlé, D., Comisso, L., & Bhattacharjee, A. ( 2017 ). Nonlinear resistivity for magnetohydrodynamical models. Physics of Plasmas, 24 ( 4 ), 42120. https://doi.org/10.1063/1.4980838
dc.identifier.citedreferenceMa, Y., Fang, X., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., & Dong, C. ( 2014 ). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophysical Research Letters, 41, 6563 – 6569. https://doi.org/10.1002/2014GL060785
dc.identifier.citedreferenceModolo, R., Hess, S., Mancini, M., Leblanc, F., Chaufray, J.‐Y., Brain, D., Leclercq, L., Esteban‐Hernández, R., Chanteur, G., Weill, P., González‐Galindo, F., Forget, F., Yagi, M., & Mazelle, C. ( 2016 ). Mars‐solar wind interaction: Lat hys, an improved parallel 3‐D multispecies hybrid model. Journal of Geophysical Research: Space Physics, 121, 6378 – 6399. https://doi.org/10.1002/2015JA022324
dc.identifier.citedreferenceMüller, J., Simon, S., Wang, Y.‐C., Motschmann, U., Heyner, D., Schüle, J., Ip, W.‐H., Kleindienst, G., & Pringle, G. J. ( 2012 ). Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus, 218, 666 – 687. https://doi.org/10.1016/j.icarus.2011.12.028
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.