Show simple item record

Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy

dc.contributor.authorWengert, Eric R.
dc.contributor.authorTronhjem, Cathrine E.
dc.contributor.authorWagnon, Jacy L.
dc.contributor.authorJohannesen, Katrine M.
dc.contributor.authorPetit, Hayley
dc.contributor.authorKrey, Ilona
dc.contributor.authorSaga, Anusha U.
dc.contributor.authorPanchal, Payal S.
dc.contributor.authorStrohm, Samantha M.
dc.contributor.authorLange, Jörn
dc.contributor.authorKamphausen, Susanne B.
dc.contributor.authorRubboli, Guido
dc.contributor.authorLemke, Johannes R.
dc.contributor.authorGardella, Elena
dc.contributor.authorPatel, Manoj K.
dc.contributor.authorMeisler, Miriam H.
dc.contributor.authorMøller, Rikke S.
dc.date.accessioned2020-01-13T15:17:56Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:17:56Z
dc.date.issued2019-11
dc.identifier.citationWengert, Eric R.; Tronhjem, Cathrine E.; Wagnon, Jacy L.; Johannesen, Katrine M.; Petit, Hayley; Krey, Ilona; Saga, Anusha U.; Panchal, Payal S.; Strohm, Samantha M.; Lange, Jörn ; Kamphausen, Susanne B.; Rubboli, Guido; Lemke, Johannes R.; Gardella, Elena; Patel, Manoj K.; Meisler, Miriam H.; Møller, Rikke S. (2019). "Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy." Epilepsia 60(11): 2277-2285.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/153117
dc.description.abstractObjectiveMonoallelic de novo gain‐of‐function variants in the voltage‐gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss‐of‐function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss‐of‐function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild‐type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A.MethodsWe identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells.ResultsWe identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss‐of‐function, and one allele with altered biophysical properties consistent with partial loss‐of‐function.SignificanceThese studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.
dc.publisherWiley Periodicals, Inc.
dc.titleBiallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/1/epi16371_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/2/epi16371.pdf
dc.identifier.doi10.1111/epi.16371
dc.identifier.sourceEpilepsia
dc.identifier.citedreferenceHarkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A‐related infantile epileptic encephalopathies. Brain. 2007; 130: 843 – 52.
dc.identifier.citedreferenceVeeramah KR, O’Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole‐genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012; 90: 502 – 10.
dc.identifier.citedreferenceGardella E, Becker F, Moller RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 2016; 79: 428 – 36.
dc.identifier.citedreferenceAnand G, Collett‐White F, Orsini A, et al. Autosomal dominant SCN8A mutation with an unusually mild phenotype. Eur J Paediatr Neurol. 2016; 20: 761 – 5.
dc.identifier.citedreferenceHan JY, Jang JH, Lee IG, Shin S, Park J. A novel inherited mutation of SCN8A in a Korean family with benign familial infantile epilepsy using diagnostic exome sequencing. Ann Clin Lab Sci. 2017; 47: 747 – 53.
dc.identifier.citedreferenceButler KM, da Silva C, Shafir Y, et al. De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res. 2017; 129: 17 – 25.
dc.identifier.citedreferenceJohannesen KM, Gardella E, Encinas AC, et al. The spectrum of intermediate SCN8A‐related epilepsy. Epilepsia. 2019; 60: 830 – 44.
dc.identifier.citedreferenceGardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology. 2018; 91: e1112 – 24.
dc.identifier.citedreferenceLarsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology. 2015; 84: 480 – 9.
dc.identifier.citedreferenceOhba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014; 55: 994 – 1000.
dc.identifier.citedreferenceLiu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain. 2019; 142: 376 – 90.
dc.identifier.citedreferenceMeisler MH, Helman G, Hammer MF, et al. SCN8A encephalopathy: research progress and prospects. Epilepsia. 2016; 57: 1027 – 35.
dc.identifier.citedreferenceWagnon JL, Barker BS, Hounshell JA, et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol. 2016; 3: 114 – 23.
dc.identifier.citedreferenceTrudeau MM, Dalton JC, Day JW, Ranum LP, Meisler MH. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet. 2006; 43: 527 – 30.
dc.identifier.citedreferenceWagnon JL, Barker BS, Ottolini M, et al. Loss‐of‐function variants of SCN8A in intellectual disability without seizures. Neurol Genet. 2017; 3: e170.
dc.identifier.citedreferenceWagnon JL, Mencacci NE, Barker BS, et al. Partial loss‐of‐function of sodium channel SCN8A in familial isolated myoclonus. Hum Mutat. 2018; 39: 965 – 9.
dc.identifier.citedreferenceWolff M, Johannesen KM, Hedrich UBS, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A‐related disorders. Brain. 2017; 140: 1316 – 36.
dc.identifier.citedreferenceO’Brien JE, Meisler MH. Sodium channel SCN8A (Nav1. 6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet. 2013; 4: 213.
dc.identifier.citedreferenceKearney JA, Buchner DA, De Haan G, et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Na(v)1.6). Hum Mol Genet. 2002; 11: 2765 – 75.
dc.identifier.citedreferenceMoller RS, Wuttke TV, Helbig I, et al. Mutations in GABRB3: from febrile seizures to epileptic encephalopathies. Neurology. 2017; 88: 483 – 92.
dc.identifier.citedreferenceRichards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405 – 24.
dc.identifier.citedreferenceLek M, Karczewski KJ, Minikel EV, et al. Analysis of protein‐coding genetic variation in 60,706 humans. Nature. 2016; 536: 285 – 91.
dc.identifier.citedreferenceBerghuis B, de Kovel CG, van Iterson L, et al. Complex SCN8A DNA‐abnormalities in an individual with therapy resistant absence epilepsy. Epilepsy Res. 2015; 115: 141 – 4.
dc.identifier.citedreferenceSintas C, Carreno O, Fernandez‐Castillo N, et al. Mutation spectrum in the CACNA1A gene in 49 patients with episodic ataxia. Sci Rep. 2017; 7: 2514.
dc.identifier.citedreferenceReinson K, Oiglane‐Shlik E, Talvik I, et al. Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. 2016; 170: 2173 – 6.
dc.identifier.citedreferenceBayat A, Hjalgrim H, Moller RS. The incidence of SCN1A‐related Dravet syndrome in Denmark is 1:22,000: a population‐based study from 2004 to 2009. Epilepsia. 2015; 56: e36 – 9.
dc.identifier.citedreferenceBunton‐Stasyshyn RKA, Wagnon JL, Wengert ER, et al. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain. 2019; 142: 362 – 75.
dc.identifier.citedreferenceMoller RS, Larsen LH, Johannesen KM, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol. 2016; 7: 210 – 9.
dc.identifier.citedreferenceMartin MS, Tang B, Papale LA, Yu FH, Catterall WA, Escayg A. The voltage‐gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet. 2007; 16: 2892 – 9.
dc.identifier.citedreferenceClatot J, Hoshi M, Wan X, et al. Voltage‐gated sodium channels assemble and gate as dimers. Nat Commun. 2017; 8: 2077.
dc.identifier.citedreferenceBartoo AC, Sprunger LK, Schneider DA. Expression and distribution of TTX‐sensitive sodium channel alpha subunits in the enteric nervous system. J Comp Neurol. 2005; 486: 117 – 31.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.