The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015
dc.contributor.author | Jagust, William J. | |
dc.contributor.author | Landau, Susan M. | |
dc.contributor.author | Koeppe, Robert A. | |
dc.contributor.author | Reiman, Eric M. | |
dc.contributor.author | Chen, Kewei | |
dc.contributor.author | Mathis, Chester A. | |
dc.contributor.author | Price, Julie C. | |
dc.contributor.author | Foster, Norman L. | |
dc.contributor.author | Wang, Angela Y. | |
dc.date.accessioned | 2020-01-13T15:17:58Z | |
dc.date.available | 2020-01-13T15:17:58Z | |
dc.date.issued | 2015-07 | |
dc.identifier.citation | Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y. (2015). "The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015." Alzheimer’s & Dementia 11(7): 757-771. | |
dc.identifier.issn | 1552-5260 | |
dc.identifier.issn | 1552-5279 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/153119 | |
dc.description.abstract | IntroductionThis article reviews the work done in the Alzheimer’s Disease Neuroimaging Initiative positron emission tomography (ADNI PET) core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI.MethodsThe PET Core has used [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of [18F]fluorodeoxyglucose (FDG)‐PET in clinical trials, and relationships between different biomarkers and cognition.ResultsConverging evidence from the PET Core has indicated that cross‐sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG‐PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale.ConclusionThe PET Core has demonstrated a variety of methods for the standardization of biomarkers such as florbetapir PET in a multicenter setting. | |
dc.publisher | Elsevier B.V. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | PET imaging | |
dc.subject.other | Fluorodeoxyglucose | |
dc.subject.other | Mild cognitive impairment | |
dc.subject.other | Alzheimer’s disease | |
dc.subject.other | Amyloid | |
dc.title | The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015 | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurology and Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/153119/1/alzjjalz201505001.pdf | |
dc.identifier.doi | 10.1016/j.jalz.2015.05.001 | |
dc.identifier.source | Alzheimer’s & Dementia | |
dc.identifier.citedreference | Wang T, Huang Q, Reiman EM, Chen K, Li X, Li G, et al. Effects of memantine on clinical ratings, fluorodeoxyglucose positron emission tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe Alzheimer dementia: a 24‐week, randomized, clinical trial. J Clin Psychopharmacol. 2013; 33: 636 – 642 | |
dc.identifier.citedreference | Lo RY, Jagust WJ Alzheimer’s Disease Neuroimaging Initiative. Vascular burden and Alzheimer disease pathologic progression. Neurology. 2012; 79: 1349 – 1355 | |
dc.identifier.citedreference | Haight TJ, Landau SM, Carmichael O, Schwarz C, DeCarli C, Jagust WJ, et al. Dissociable effects of Alzheimer disease and white matter hyperintensities on brain metabolism. JAMA Neurol. 2013; 70: 1039 – 1045 | |
dc.identifier.citedreference | Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage. 2009; 45: 1107 – 1116 | |
dc.identifier.citedreference | Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011; 56: 52 – 60 | |
dc.identifier.citedreference | Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve‐month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre‐defined statistical region‐of‐interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010; 51: 654 – 664 | |
dc.identifier.citedreference | Beckett LA, Harvey DJ, Gamst A, Donohue M, Kornak J, Zhang H, et al. The Alzheimer’s Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010; 6: 257 – 264 | |
dc.identifier.citedreference | Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, et al. Summary metrics to assess Alzheimer disease‐related hypometabolic pattern with 18F‐FDG PET: head‐to‐head comparison. J Nucl Med. 2012; 53: 592 – 600 | |
dc.identifier.citedreference | Schraml F, Chen K, Ayutyanont N, Auttawut R, Langbaum JB, Lee W, et al. Association between an Alzheimer’s disease‐related index and gene dose. PLoS One. 2013; 8: e67163 | |
dc.identifier.citedreference | Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M, Langois CM, et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross‐sectional study. JAMA Neurol. 2015; 72: 316 – 324 | |
dc.identifier.citedreference | Protas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, Lee W, et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late‐middle‐aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 2013; 70: 320 – 325 | |
dc.identifier.citedreference | Toledo JB, Cairns NJ, Da X, Chen K, Carter D, Fleisher A, et al. Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathol Commun. 2013; 1: 65 | |
dc.identifier.citedreference | Toledo JB, Weiner MW, Wolk DA, Da X, Chen K, Arnold SE, et al. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol Commun. 2014; 2: 26 | |
dc.identifier.citedreference | Shi J, Stonnington CM, Thompson PM, Chen K, Gutman B, Reschke C, et al. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor‐based morphometry. Neuroimage. 2015; 104: 1 – 20 | |
dc.identifier.citedreference | Wu X, Li J, Ayutyanont N, Protas H, Jagust W, Fleisher A, et al. The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinform. 2013; 10: 173 – 180 | |
dc.identifier.citedreference | Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, et al. A multi‐center randomized proof‐of‐concept clinical trial applying [(1)(8)F]FDG‐PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis. 2010; 22: 1241 – 1256 | |
dc.identifier.citedreference | Jack CR Jr., Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain beta‐amyloid load approaches a plateau. Neurology. 2013; 80: 890 – 896 | |
dc.identifier.citedreference | Langbaum JB, Fleisher AS, Chen K, Ayutyanont N, Lopera F, Quiroz YT, et al. Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. 2013; 9: 371 – 381 | |
dc.identifier.citedreference | Reiman EM, Langbaum JB, Tariot PN. Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark Med. 2010; 4: 3 – 14 | |
dc.identifier.citedreference | Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994; 35: 1528 – 1537 | |
dc.identifier.citedreference | Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C‐PIB frames and 18F‐FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011; 52: 173 – 179 | |
dc.identifier.citedreference | Hsiao IT, Huang CC, Hsieh CJ, Hsu WC, Wey SP, Yen TC, et al. Correlation of early‐phase 18F‐florbetapir (AV‐45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012; 39: 613 – 620 | |
dc.identifier.citedreference | Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999; 7: 254 – 266 | |
dc.identifier.citedreference | Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid‐beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013; 54: 70 – 77 | |
dc.identifier.citedreference | Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF‐tau radioligand [F‐18]‐T807. J Alzheimers Dis. 2013; 34: 457 – 468 | |
dc.identifier.citedreference | Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013; 79: 1094 – 1108 | |
dc.identifier.citedreference | Okamura N, Furumoto S, Fodero‐Tavoletti MT, Mulligan RS, Harada R, Yates P, et al. Non‐invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F‐THK5105 PET. Brain. 2014; 137: 1762 – 1771 | |
dc.identifier.citedreference | Villemagne VL, Fodero‐Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol. 2015; 14: 114 – 124 | |
dc.identifier.citedreference | Ossenkoppele R, Schonhaut DR, Baker SL, O’Neil JP, Janabi M, Ghosh PM, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015; 77: 338 – 342 | |
dc.identifier.citedreference | Jack CR Jr., Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging‐Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012; 71: 765 – 775 | |
dc.identifier.citedreference | Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement. 2010; 6: 221 – 229 | |
dc.identifier.citedreference | Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild‐to‐moderate Alzheimer’s disease. N Engl J Med. 2014; 370: 322 – 333 | |
dc.identifier.citedreference | Sperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP, et al. The A4 study: stopping AD before symptoms begin?. Sci Transl Med. 2014; 6: 228fs13 | |
dc.identifier.citedreference | Talairach J, Tournoux P. Co‐planar stereotaxic atlas of the human brain. New York: Thieme; 1988. | |
dc.identifier.citedreference | Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012; 72: 578 – 586 | |
dc.identifier.citedreference | Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013; 12: 357 – 367 | |
dc.identifier.citedreference | Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal beta‐amyloid change with 18f‐florbetapir pet and standardized uptake value ratios. J Nucl Med. 2015; 56: 567 – 574 | |
dc.identifier.citedreference | Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid‐beta PET changes and evaluating amyloid‐modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015; 56: 560 – 566 | |
dc.identifier.citedreference | Brendel M, Hogenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]‐AV45 amyloid PET by white matter reference and VOI‐based partial volume effect correction. Neuroimage. 2015; 108: 450 – 459 | |
dc.identifier.citedreference | Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound‐B. J Cereb Blood Flow Metab. 2005; 25: 1528 – 1547 | |
dc.identifier.citedreference | Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr., Jagust WJ, et al. The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015; 11: 1 – 15.e4 | |
dc.identifier.citedreference | Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of beta‐amyloid. Ann Neurol. 2013; 74: 826 – 836 | |
dc.identifier.citedreference | Mattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, et al. Independent information from cerebrospinal fluid amyloid‐beta and florbetapir imaging in Alzheimer’s disease. Brain. 2015; 138: 772 – 783 | |
dc.identifier.citedreference | Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014; 41: 1398 – 1407 | |
dc.identifier.citedreference | Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F‐flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010; 68: 319 – 329 | |
dc.identifier.citedreference | Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al. Comparison of 11C‐PiB and 18F‐florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012; 39: 983 – 989 | |
dc.identifier.citedreference | Lo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol. 2011; 68: 1257 – 1266 | |
dc.identifier.citedreference | Jack CR Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013; 12: 207 – 216 | |
dc.identifier.citedreference | Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010; 9: 119 – 128 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.