Show simple item record

The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015

dc.contributor.authorJagust, William J.
dc.contributor.authorLandau, Susan M.
dc.contributor.authorKoeppe, Robert A.
dc.contributor.authorReiman, Eric M.
dc.contributor.authorChen, Kewei
dc.contributor.authorMathis, Chester A.
dc.contributor.authorPrice, Julie C.
dc.contributor.authorFoster, Norman L.
dc.contributor.authorWang, Angela Y.
dc.date.accessioned2020-01-13T15:17:58Z
dc.date.available2020-01-13T15:17:58Z
dc.date.issued2015-07
dc.identifier.citationJagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y. (2015). "The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015." Alzheimer’s & Dementia 11(7): 757-771.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/153119
dc.description.abstractIntroductionThis article reviews the work done in the Alzheimer’s Disease Neuroimaging Initiative positron emission tomography (ADNI PET) core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI.MethodsThe PET Core has used [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of [18F]fluorodeoxyglucose (FDG)‐PET in clinical trials, and relationships between different biomarkers and cognition.ResultsConverging evidence from the PET Core has indicated that cross‐sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG‐PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale.ConclusionThe PET Core has demonstrated a variety of methods for the standardization of biomarkers such as florbetapir PET in a multicenter setting.
dc.publisherElsevier B.V.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPET imaging
dc.subject.otherFluorodeoxyglucose
dc.subject.otherMild cognitive impairment
dc.subject.otherAlzheimer’s disease
dc.subject.otherAmyloid
dc.titleThe Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153119/1/alzjjalz201505001.pdf
dc.identifier.doi10.1016/j.jalz.2015.05.001
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceWang T, Huang Q, Reiman EM, Chen K, Li X, Li G, et al. Effects of memantine on clinical ratings, fluorodeoxyglucose positron emission tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe Alzheimer dementia: a 24‐week, randomized, clinical trial. J Clin Psychopharmacol. 2013; 33: 636 – 642
dc.identifier.citedreferenceLo RY, Jagust WJ Alzheimer’s Disease Neuroimaging Initiative. Vascular burden and Alzheimer disease pathologic progression. Neurology. 2012; 79: 1349 – 1355
dc.identifier.citedreferenceHaight TJ, Landau SM, Carmichael O, Schwarz C, DeCarli C, Jagust WJ, et al. Dissociable effects of Alzheimer disease and white matter hyperintensities on brain metabolism. JAMA Neurol. 2013; 70: 1039 – 1045
dc.identifier.citedreferenceLangbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage. 2009; 45: 1107 – 1116
dc.identifier.citedreferenceChen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011; 56: 52 – 60
dc.identifier.citedreferenceChen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve‐month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre‐defined statistical region‐of‐interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010; 51: 654 – 664
dc.identifier.citedreferenceBeckett LA, Harvey DJ, Gamst A, Donohue M, Kornak J, Zhang H, et al. The Alzheimer’s Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010; 6: 257 – 264
dc.identifier.citedreferenceCaroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, et al. Summary metrics to assess Alzheimer disease‐related hypometabolic pattern with 18F‐FDG PET: head‐to‐head comparison. J Nucl Med. 2012; 53: 592 – 600
dc.identifier.citedreferenceSchraml F, Chen K, Ayutyanont N, Auttawut R, Langbaum JB, Lee W, et al. Association between an Alzheimer’s disease‐related index and gene dose. PLoS One. 2013; 8: e67163
dc.identifier.citedreferenceFleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M, Langois CM, et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross‐sectional study. JAMA Neurol. 2015; 72: 316 – 324
dc.identifier.citedreferenceProtas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, Lee W, et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late‐middle‐aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 2013; 70: 320 – 325
dc.identifier.citedreferenceToledo JB, Cairns NJ, Da X, Chen K, Carter D, Fleisher A, et al. Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathol Commun. 2013; 1: 65
dc.identifier.citedreferenceToledo JB, Weiner MW, Wolk DA, Da X, Chen K, Arnold SE, et al. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol Commun. 2014; 2: 26
dc.identifier.citedreferenceShi J, Stonnington CM, Thompson PM, Chen K, Gutman B, Reschke C, et al. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor‐based morphometry. Neuroimage. 2015; 104: 1 – 20
dc.identifier.citedreferenceWu X, Li J, Ayutyanont N, Protas H, Jagust W, Fleisher A, et al. The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinform. 2013; 10: 173 – 180
dc.identifier.citedreferenceTzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, et al. A multi‐center randomized proof‐of‐concept clinical trial applying [(1)(8)F]FDG‐PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis. 2010; 22: 1241 – 1256
dc.identifier.citedreferenceJack CR Jr., Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain beta‐amyloid load approaches a plateau. Neurology. 2013; 80: 890 – 896
dc.identifier.citedreferenceLangbaum JB, Fleisher AS, Chen K, Ayutyanont N, Lopera F, Quiroz YT, et al. Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. 2013; 9: 371 – 381
dc.identifier.citedreferenceReiman EM, Langbaum JB, Tariot PN. Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark Med. 2010; 4: 3 – 14
dc.identifier.citedreferenceMinoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994; 35: 1528 – 1537
dc.identifier.citedreferenceRostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C‐PIB frames and 18F‐FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011; 52: 173 – 179
dc.identifier.citedreferenceHsiao IT, Huang CC, Hsieh CJ, Hsu WC, Wey SP, Yen TC, et al. Correlation of early‐phase 18F‐florbetapir (AV‐45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012; 39: 613 – 620
dc.identifier.citedreferenceAshburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999; 7: 254 – 266
dc.identifier.citedreferenceLandau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid‐beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013; 54: 70 – 77
dc.identifier.citedreferenceChien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF‐tau radioligand [F‐18]‐T807. J Alzheimers Dis. 2013; 34: 457 – 468
dc.identifier.citedreferenceMaruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013; 79: 1094 – 1108
dc.identifier.citedreferenceOkamura N, Furumoto S, Fodero‐Tavoletti MT, Mulligan RS, Harada R, Yates P, et al. Non‐invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F‐THK5105 PET. Brain. 2014; 137: 1762 – 1771
dc.identifier.citedreferenceVillemagne VL, Fodero‐Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol. 2015; 14: 114 – 124
dc.identifier.citedreferenceOssenkoppele R, Schonhaut DR, Baker SL, O’Neil JP, Janabi M, Ghosh PM, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015; 77: 338 – 342
dc.identifier.citedreferenceJack CR Jr., Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging‐Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012; 71: 765 – 775
dc.identifier.citedreferenceJagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement. 2010; 6: 221 – 229
dc.identifier.citedreferenceSalloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild‐to‐moderate Alzheimer’s disease. N Engl J Med. 2014; 370: 322 – 333
dc.identifier.citedreferenceSperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP, et al. The A4 study: stopping AD before symptoms begin?. Sci Transl Med. 2014; 6: 228fs13
dc.identifier.citedreferenceTalairach J, Tournoux P. Co‐planar stereotaxic atlas of the human brain. New York: Thieme; 1988.
dc.identifier.citedreferenceLandau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012; 72: 578 – 586
dc.identifier.citedreferenceVillemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013; 12: 357 – 367
dc.identifier.citedreferenceLandau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal beta‐amyloid change with 18f‐florbetapir pet and standardized uptake value ratios. J Nucl Med. 2015; 56: 567 – 574
dc.identifier.citedreferenceChen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid‐beta PET changes and evaluating amyloid‐modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015; 56: 560 – 566
dc.identifier.citedreferenceBrendel M, Hogenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]‐AV45 amyloid PET by white matter reference and VOI‐based partial volume effect correction. Neuroimage. 2015; 108: 450 – 459
dc.identifier.citedreferencePrice JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound‐B. J Cereb Blood Flow Metab. 2005; 25: 1528 – 1547
dc.identifier.citedreferenceKlunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr., Jagust WJ, et al. The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015; 11: 1 – 15.e4
dc.identifier.citedreferenceLandau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of beta‐amyloid. Ann Neurol. 2013; 74: 826 – 836
dc.identifier.citedreferenceMattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, et al. Independent information from cerebrospinal fluid amyloid‐beta and florbetapir imaging in Alzheimer’s disease. Brain. 2015; 138: 772 – 783
dc.identifier.citedreferenceLandau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014; 41: 1398 – 1407
dc.identifier.citedreferenceVandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F‐flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010; 68: 319 – 329
dc.identifier.citedreferenceVillemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al. Comparison of 11C‐PiB and 18F‐florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012; 39: 983 – 989
dc.identifier.citedreferenceLo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol. 2011; 68: 1257 – 1266
dc.identifier.citedreferenceJack CR Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013; 12: 207 – 216
dc.identifier.citedreferenceJack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010; 9: 119 – 128
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.