Show simple item record

The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data

dc.contributor.authorSchmidt, Mark E.
dc.contributor.authorChiao, Ping
dc.contributor.authorKlein, Gregory
dc.contributor.authorMatthews, Dawn
dc.contributor.authorThurfjell, Lennart
dc.contributor.authorCole, Patricia E.
dc.contributor.authorMargolin, Richard
dc.contributor.authorLandau, Susan
dc.contributor.authorFoster, Norman L.
dc.contributor.authorMason, N. Scott
dc.contributor.authorSanti, Susan
dc.contributor.authorSuhy, Joyce
dc.contributor.authorKoeppe, Robert A.
dc.contributor.authorJagust, William
dc.date.accessioned2020-01-13T15:18:02Z
dc.date.available2020-01-13T15:18:02Z
dc.date.issued2015-09
dc.identifier.citationSchmidt, Mark E.; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E.; Margolin, Richard; Landau, Susan; Foster, Norman L.; Mason, N. Scott; Santi, Susan; Suhy, Joyce; Koeppe, Robert A.; Jagust, William (2015). "The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data." Alzheimer’s & Dementia 11(9): 1050-1068.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/153122
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier B.V.
dc.subject.otherPositron emission tomography
dc.subject.otherAmyloid
dc.subject.otherADNI
dc.subject.otherQuantitative analysis
dc.subject.otherWithin subject variability
dc.subject.otherMulti‐site trials
dc.subject.otherAlzheimer’s disease
dc.titleThe influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153122/1/alzjjalz201409004.pdf
dc.identifier.doi10.1016/j.jalz.2014.09.004
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceQuarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial‐volume‐effect correction. J Nucl Med. 2004; 45: 192 – 201
dc.identifier.citedreferenceThomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011; 38: 1104 – 1119
dc.identifier.citedreferenceRaniga P, Bourgeat P, Fripp J, Acosta O, Ourselin S, Rowe C, et al. Alzheimer’s disease detection using 11C‐PiB with improved partial volume effect correction. Med Imaging, Proc SPIE 2009 [cited 7262].
dc.identifier.citedreferenceLowe VJ, Kemp BJ, Jack CR, Senjem M, Weigand S, Shiung M, et al. Comparison of 18F‐FDG and PiB PET in cognitive impairment. J Nucl Med. 2009; 50: 878 – 886
dc.identifier.citedreferenceNakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation‐corrected images. J Nucl Med. 2002; 43: 1137 – 1143
dc.identifier.citedreferenceFahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT‐based attenuation correction for pediatric PET: phantom study 1. Radiology. 2007; 243: 96 – 104
dc.identifier.citedreferenceTing X, Adam MA, Bruno De M, Ravindra M, Evren A, Paul EK. Ultra‐low dose CT attenuation correction for PET/CT. Phys Med Biol. 2012; 57: 309
dc.identifier.citedreferenceVarrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Nagren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009; 36: 2103 – 2110
dc.identifier.citedreferenceMalone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med. 2011; 52: 1142 – 1149
dc.identifier.citedreferenceKoeppe, RA. Siemens HRRT PET scan warnings. 2007; Available from: http://adni.loni.ucla.edu/siemens‐hrrt‐pet‐scan‐warnings/.
dc.identifier.citedreferenceKeller S, Svarer C, Sibomana M. Attenuation correction for the HRRT PET‐scanner using transmission scatter correction and total variation regularization. IEEE Trans Med Imaging. 2013; 32: 1611 – 1621
dc.identifier.citedreferenceDoot RK, Scheuermann JS, Christian PE, Karp JS, Kinahan PE. Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Med Phys. 2010; 37: 6035 – 6046
dc.identifier.citedreferenceBoellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004; 45: 1519 – 1527
dc.identifier.citedreferenceAndersson JLR. A rapid and accurate method to realign PET scans utilizing image edge information. J Nucl Med. 1995; 36: 657 – 669
dc.identifier.citedreferenceKlein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009; 46: 786 – 802
dc.identifier.citedreferenceHolland D, Dale AM, Alzheimer’s Disease Neuroimaging Initiative. Nonlinear registration of longitudinal images and measurement of change in regions of interest. Med Image Anal. 2011; 15: 489 – 497
dc.identifier.citedreferenceLundqvist R, Lilja J, Thomas BA, Lotjonen J, Villemagne VL, Rowe CC, et al. Implementation and validation of an adaptive template registration method for 18F‐flutemetamol imaging data. J Nucl Med. 2013; 54: 1472 – 1478
dc.identifier.citedreferenceKlunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound‐B. Ann Neurol. 2004; 55: 306 – 319
dc.identifier.citedreferenceBraak H, Braak E. Neuropathological stageing of Alzheimer‐related changes. Acta Neuropathologica. 1991; 82: 239 – 259
dc.identifier.citedreferenceLopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005; 46: 1959 – 1972
dc.identifier.citedreferenceJoachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol. 1989; 135: 309 – 319
dc.identifier.citedreferenceKnight WD, Okello AA, Ryan NS, Turkheimer FE, Rodriguez Martinez de Llano S, Edison P, et al. Carbon‐11‐Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain. 2011; 134 (Pt 1): 293 – 300
dc.identifier.citedreferenceEdison, P, Hinz R, Ramlackhansingh A, Thomas J, Turkheimer FE, Brooks DJ. Can we use pons as a reference region for the analysis of [11C]PIB PET? Presented at the Human Amyloid Imaging Conference. April 9, 2010; Toronto, CA.
dc.identifier.citedreferenceZiolko SK, Weissfeld LA, Klunk WE, Mathis CA, Hoge JA, Lopresti BJ, et al. Evaluation of voxel‐based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. NeuroImage. 2006; 33: 94 – 102
dc.identifier.citedreferenceEngler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two‐year follow‐up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006; 129: 2856 – 2866
dc.identifier.citedreferenceRowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging {beta}‐amyloid burden in aging and dementia. Neurology. 2007; 68: 1718 – 1725
dc.identifier.citedreferenceRodrigue KM, Kennedy KM, Devous MD Sr., Rieck JR, Hebrank AC, Diaz‐Arrastia R, et al. Beta‐amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology. 2012; 78: 387 – 395
dc.identifier.citedreferenceYotter RA, Doshi J, Clark V, Sojkova J, Zhou Y, Wong DF, et al. Memory decline shows stronger associations with estimated spatial patterns of amyloid deposition progression than total amyloid burden. Neurobiol Aging. 2013; 34: 2835 – 2842
dc.identifier.citedreferenceLi Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, et al. Regional analysis of FDG and PIB‐PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2008; 35: 2169 – 2181
dc.identifier.citedreferenceJack CR Jr., Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008; 131: 665 – 680
dc.identifier.citedreferenceMormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is related to hippocampal‐mediated beta‐amyloid deposition in elderly subjects. Brain. 2009; 132 (Pt 5): 1310 – 1323
dc.identifier.citedreferenceRowe, C. The Centiloid Scale: Standardization of amyloid imaging measures, in Alzheimer’s Imaging Consortium ‐ Alzheimer’s Association International Conference. 2013: Boston, USA.
dc.identifier.citedreferenceMattsson N, Zetterberg H, Blennow K. Lessons from multicenter studies on CSF biomarkers for Alzheimer’s disease. Int J Alzheimers Dis. 2010: 2010
dc.identifier.citedreferenceMattsson N, Blennow K, Zetterberg H. Inter‐laboratory variation in cerebrospinal fluid biomarkers for Alzheimer’s disease: united we stand, divided we fall. Clin Chem Lab Med. 2010; 48: 603 – 607
dc.identifier.citedreferenceJack CR Jr., Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement. 2011; 7: 474 – 485 e4
dc.identifier.citedreferenceBraak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease‐associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006; 112: 389 – 404
dc.identifier.citedreferenceClark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir‐PET for imaging b‐amyloid pathology. JAMA 2011; 305: 275 – 283
dc.identifier.citedreferenceAvailable from: http://www.amyvid.com/Pages/reader‐training‐program.aspx.
dc.identifier.citedreference(QIBA), Q.I.B.A., QIBA Profile. FDG‐PET/CT as an imaging biomarker. 3. Measuring response to cancer therapy.  2013.
dc.identifier.citedreferenceBoellaard R, O’Doherty M, Weber W, Mottaghy F, Lonsdale M, Stroobants S, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010; 37: 181 – 200
dc.identifier.citedreferenceJagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dementia. 2010; 6: 221 – 229
dc.identifier.citedreferenceTolboom N, Yaqub M, Boellaard R, Luurtsema G, Windhorst A, Scheltens P, et al. Test‐retest variability of quantitative [11C]PIB studies in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009; 36: 1629 – 1638
dc.identifier.citedreferenceScheinin NM, Aalto S, Koikkalainen J, Lotjonen J, Karrasch M, Kemppainen N, et al. Follow‐up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology. 2009; 73: 1186 – 1192
dc.identifier.citedreferenceBraak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011; 70: 960 – 969
dc.identifier.citedreferenceVlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TL, et al. Amyloid‐beta plaque growth in cognitively normal adults: longitudinal PIB data. Ann Neurol. 2011; 70: 857 – 861
dc.identifier.citedreferenceFleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P, et al. Apolipoprotein E epsilon4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013; 34: 1 – 12
dc.identifier.citedreferenceJack CR Jr., Wiste HJ, Weigand SD, Knopman DS, Lowe V, Vemuri P, et al. Amyloid‐first and neurodegeneration‐first profiles characterize incident amyloid PET positivity. Neurology. 2013; 81: 1732 – 1740
dc.identifier.citedreferenceBateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012; 367: 795 – 804
dc.identifier.citedreferenceHanden BL, Cohen AD, Channamalappa U, Bulova P, Cannon SA, Cohen WI, et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 2012; 8: 496 – 501
dc.identifier.citedreferenceKarran E, Mercken M, Strooper BD. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011; 10: 698 – 712
dc.identifier.citedreferenceVillemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M, et al. High striatal amyloid {beta}‐peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol. 2009; 66: 1537 – 1544
dc.identifier.citedreferenceCorder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993; 261: 921 – 923
dc.identifier.citedreferenceMeyer MR, Tschanz JT, Norton MC, Welsh‐Bohmer KA, Steffens DC, Wyse BW, et al. APOE genotype predicts when—not whether—one is predisposed to develop Alzheimer disease. Nat Genet. 1998; 19: 321 – 322
dc.identifier.citedreferenceBarthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid‐[beta] PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011; 10: 424 – 435
dc.identifier.citedreferenceReiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, et al. Fibrillar amyloid‐ß burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. PNAS. 2009; 106: 6820 – 6825
dc.identifier.citedreferenceFleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N, et al. Using positron emission tomography and florbetapir F 18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011; 68: 1404 – 1411
dc.identifier.citedreferenceGrimmer T, Tholen S, Yousefi BH, Alexopoulos P, Förschler A, Förstl H, et al. Progression of cerebral amyloid load is associated with the apolipoprotein E [epsilon]4 genotype in Alzheimer’s disease. Biol Psychiatry. 2010; 68: 879 – 884
dc.identifier.citedreferenceAllan CL, Ebmeier KP. The influence of ApoE4 on clinical progression of dementia: a meta‐analysis. Int J Geriatr Psychiatry. 2011; 26: 520 – 526
dc.identifier.citedreferenceGhebremedhin E, Schultz C, Thal DR, Rüb U, Ohm TG, Braak E, et al. Gender and age modify the association between APOE and AD‐related neuropathology. Neurology. 2001; 56: 1696 – 1701
dc.identifier.citedreferenceGorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011; 42: 2672 – 2713
dc.identifier.citedreferenceToledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain. 2013; 136 (Pt 9): 2697 – 2706
dc.identifier.citedreferenceRodrigue KM, Rieck JR, Kennedy KM, Devous MD, Sr Diaz‐Arrastia R, et al. Risk factors for β‐amyloid deposition in healthy aging: vascular and genetic effects. JAMA Neurol. 2013; 70: 600 – 606
dc.identifier.citedreferenceHughes TM, Kuller LH, Barinas‐Mitchell EM. Arterial stiffness and β‐amyloid progression in nondemented elderly adults. JAMA Neurol. 2014; 71: 562 – 568
dc.identifier.citedreferenceJohnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH, Moran EK, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol. 2007; 62: 229 – 234
dc.identifier.citedreferenceSperling RA, Jack CR, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid‐related imaging abnormalities in amyloid‐modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dementia. 2011; 7: 367 – 385
dc.identifier.citedreferenceLy JV, Donnan GA, Villemagne VL, Zavala JA, Ma H, O’Keefe G, et al. 11C‐PIB binding is increased in patients with cerebral amyloid angiopathy‐related hemorrhage. Neurology. 2010; 74: 487 – 493
dc.identifier.citedreferenceIkonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post‐mortem correlates of in vivo PiB‐PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008; 131: 1630 – 1645
dc.identifier.citedreferenceClark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid‐beta plaques: a prospective cohort study. Lancet Neurol. 2012; 11: 669 – 678
dc.identifier.citedreferenceCairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, et al. Absence of Pittsburgh compound B detection of cerebral amyloid {beta} in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol. 2009; 66: 1557 – 1562
dc.identifier.citedreferenceSojkova J, Driscoll I, Iacono D, Zhou Y, Codispoti KE, Kraut MA, et al. In vivo fibrillar beta‐amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults. Arch Neurol. 2011; 68: 232 – 240
dc.identifier.citedreferenceKlunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin‐1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007; 27: 6174 – 6184
dc.identifier.citedreferenceVillemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M, et al. High striatal amyloid beta‐peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol. 2009; 66: 1537 – 1544
dc.identifier.citedreferenceThal DR, Rub U, Orantes M, Braak H. Phases of A beta‐deposition in the human brain and its relevance for the development of AD. Neurology. 2002; 58: 1791 – 1800
dc.identifier.citedreferenceStern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012; 11: 1006 – 1012
dc.identifier.citedreferenceMorbelli S, Perneczky R, Drzezga A, Frisoni GB, Caroli A, van Berckel BNM, et al. Metabolic networks underlying cognitive reserve in prodromal Alzheimer disease: a European Alzheimer disease consortium project. J Nucl Med. 2013; 54: 894 – 902
dc.identifier.citedreferenceLandau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil JP, et al. Association of lifetime cognitive engagement and low beta‐amyloid deposition. Arch Neurol. 2012; 69: 623 – 629
dc.identifier.citedreferenceGroenning M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol. 2010; 3: 1 – 18
dc.identifier.citedreferenceRinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C‐PiB PET assessment of change in fibrillar amyloid‐ß load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double‐blind, placebo‐controlled, ascending‐dose study. Lancet Neurol. 2010; 9: 363 – 372
dc.identifier.citedreferenceRyu YH, Liow JS, Zoghbi S, Fujita M, Collins J, Tipre D, et al. Disulfiram inhibits defluorination of (18)F‐FCWAY, reduces bone radioactivity, and enhances visualization of radioligand binding to serotonin 5‐HT1A receptors in human brain. J Nucl Med. 2007; 48: 1154 – 1161
dc.identifier.citedreferenceWong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F‐AV‐45 (florbetapir [corrected] F 18). J Nucl Med. 2010; 51: 913 – 920
dc.identifier.citedreferenceVan Vlaslaer A, Mortishire‐Smith RJ, Mackie C, Langlois X, Schmidt ME. Profiling of hepatic clearance pathways of Pittsburgh compound B and human liver cytochrome p450 phenotyping. EJNMMI Res. 2013; 3: 10
dc.identifier.citedreferenceHerzog H, Seitz RJ, Tellmann L, Rota Kops E, Julicher F, Schlaug G, et al. Quantitation of regional cerebral blood flow with 15O‐butanol and positron emission tomography in humans. J Cereb Blood Flow Metab. 1996; 16: 645 – 649
dc.identifier.citedreferenceAlegret M, Cuberas‐Borrós G, Vinyes‐Junqué G, Espinosa A, Valero S, Hernández I, et al. A two‐year follow‐up of cognitive deficits and brain perfusion in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis. 2012; 30: 109 – 120
dc.identifier.citedreferenceSaha GB. Basics of PET imaging: physics, chemistry and regulations, SSB Media, Editor 2005; Springer
dc.identifier.citedreferenceMorris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RF, Fisher RE. Kinetic modeling in positron emission tomography Wernick MN, Aarsvold JN. Emission tomography: the fundamentals of PET and SPECT. 2004; Academic Press 499 – 540
dc.identifier.citedreferenceGjedde A, Aanerud J, Braendgaard H, Rodell AB. Blood‐brain transfer of Pittsburgh compound B in humans. Front Aging Neurosci. 2013; 5: 70
dc.identifier.citedreferenceBlomquist G, Engler H, Nordberg A, Ringheim A, Wall A, Forsberg A, et al. Unidirectional influx and net accumulation of PIB. Open Neuroimag J. 2008; 2: 114 – 125
dc.identifier.citedreferencePrice JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound‐B. J Cereb Blood Flow Metab. 2005; 25: 1528 – 1547
dc.identifier.citedreferenceNelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F‐flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009; 50: 1251 – 1259
dc.identifier.citedreferenceYaqub M, Tolboom N, Boellaard R, van Berckel BNM, van Tilburg EW, Luurtsema G, et al. Simplified parametric methods for [11C]PIB studies. NeuroImage. 2008; 42: 76 – 86
dc.identifier.citedreferenceMcNamee RL, Yee SH, Price JC, Klunk WE, Rosario B, Weissfeld L, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med. 2009; 50: 348 – 355
dc.identifier.citedreferenceVillemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011; 69: 181 – 192
dc.identifier.citedreferenceCarson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993; 13: 24 – 42
dc.identifier.citedreferencevan Berckel BNM, Ossenkoppele R, Tolboom N, Yaqub M, Foster‐Dingley JC, Windhorst AD, et al. Longitudinal amyloid imaging using 11C‐PiB: methodologic considerations. J Nucl Med. 2013; 54: 1570 – 1576
dc.identifier.citedreferenceZhou Y, Sojkova J, Resnick SM, Wong DF. Relative equilibrium plot improves graphical analysis and allows bias correction of standardized uptake value ratio in quantitative 11C‐PiB PET studies. J Nucl Med. 2012; 53: 622 – 628
dc.identifier.citedreferenceVillemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with 18F‐florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011; 52: 1210 – 1217
dc.identifier.citedreferenceJoshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. J Nucl Med. 2012; 53: 378 – 384
dc.identifier.citedreferenceVandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F‐flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010; 68: 319 – 329
dc.identifier.citedreferenceCselényi Z, Jönhagen ME, Forsberg A, Halldin C, Julin P, Schou M, et al. Clinical validation of 18F‐AZD4694, an amyloid‐β–specific PET radioligand. J Nucl Med. 2012; 53: 415 – 424
dc.identifier.citedreferenceChang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978; 25: 638 – 643
dc.identifier.citedreferenceRowe CC, Pejoska S, Mulligan RS, Jones G, Chan JG, Svensson S, et al. Head‐to‐head comparison of 11C‐PiB and 18F‐AZD4694 (NAV4694) for β‐amyloid imaging in aging and dementia. J Nucl Med. 2013; 54: 880 – 886
dc.identifier.citedreferenceRinne J, Wong D, Wolk D, Leinonen V, Arnold S, Buckley C, et al. [18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathologica. 2012; 124: 833 – 845
dc.identifier.citedreferenceStankoff B, Freeman L, Aigrot MS, Chardain A, Dolle F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl‐(1)(1)C]‐2‐(4’‐methylaminophenyl)‐6‐hydroxybenzothiazole. Ann Neurol. 2011; 69: 673 – 680
dc.identifier.citedreferenceLandau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid‐β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013; 54: 70 – 77
dc.identifier.citedreferenceLandau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014; 41: 1398 – 1407
dc.identifier.citedreferenceU.S. Department of Health and Human Services Food and Drug Administration, C.f.D.E.a.R.C. PET drugs—current good manufacturing practice (CGMP).  2009.
dc.identifier.citedreferenceUSP Chapter <823> “Radiopharmaceuticals for Positron Emission Tomography— Compounding,” (USP 32/NF 27) 2009.
dc.identifier.citedreferenceElsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Faivre‐Chauvet A, et al. Guidance on current good radiopharmacy practice (cGRPP) for the small‐scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2010; 37: 1049 – 1062
dc.identifier.citedreferenceVerbruggen A, Coenen H, Deverre J‐R, Guilloteau D, Langstrom B, Salvadori P, et al. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging. 2008; 35: 2144 – 2151
dc.identifier.citedreferenceAndersson JL, Vagnhammar BE, Schneider H. Accurate attenuation correction despite movement during PET imaging. J Nucl Med. 1995; 36: 670 – 678
dc.identifier.citedreferenceIkari Y, Nishio T, Makishi Y, Miya Y, Ito K, Koeppe RA, et al. Head motion evaluation and correction for PET scans with 18F‐FDG in the Japanese Alzheimer’s Disease Neuroimaging Initiative (J‐ADNI) multi‐center study. Ann Nucl Med. 2012; 26: 535 – 544
dc.identifier.citedreferenceBoellaard R, Oyen WJG, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi‐centre trials. Eur J Nucl Med Mol Imaging. 2008; 35: 2320 – 2333
dc.identifier.citedreferenceKinahan PE, Fletcher JW. Positron emission tomography‐computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010; 31: 496 – 505
dc.identifier.citedreferenceKlein G, Scott D, Sharoyon V, Oh J, Koeppe RA, Suhy J. Scanner resolution effects on quantitative amyloid measurements, in Human amyloid imaging. Presented at the 7th Human Amyloid Imaging. January 16–18, 2013: Miami Beach, FL.
dc.identifier.citedreferenceJoshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi‐center PET studies. NeuroImage. 2009; 46: 154 – 159
dc.identifier.citedreferenceKoeppe, RA. ADNI PET pre‐processing. 2013. Available at: http://adni.loni.ucla.edu/methods/pet‐analysis/pre‐processing/. Accessed May 31, 2013.
dc.identifier.citedreferenceErlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012; 57: R119 – R159
dc.identifier.citedreferenceMeltzer CC, Kinahan PE, Greer PJ, Nichols TE, Comtat C, Cantwell MN, et al. Comparative evaluation of MR‐based partial‐volume correction schemes for PET. J Nucl Med. 1999; 40: 2053 – 2065
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.