Show simple item record

Solid‐Phase Synthesis of 2′‐Deoxy‐2′‐fluoro‐ β‐D‐Oligoarabinonucleotides (2′F‐ANA) and Their Phosphorothioate Derivatives

dc.contributor.authorViazovkina, Ekaterina
dc.contributor.authorMangos, Maria M.
dc.contributor.authorElzagheid, Mohamed I.
dc.contributor.authorDamha, Masad J.
dc.date.accessioned2020-01-13T15:18:14Z
dc.date.available2020-01-13T15:18:14Z
dc.date.issued2002-09
dc.identifier.citationViazovkina, Ekaterina; Mangos, Maria M.; Elzagheid, Mohamed I.; Damha, Masad J. (2002). "Solid‐Phase Synthesis of 2′‐Deoxy‐2′‐fluoro‐ β‐D‐Oligoarabinonucleotides (2′F‐ANA) and Their Phosphorothioate Derivatives." Current Protocols in Nucleic Acid Chemistry 10(1): 4.15.1-4.15.22.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/153131
dc.description.abstractThis unit describes the chemical synthesis of 2’‐deoxy‐2’‐fluoro‐b‐D‐oligoarabinonucleotides (2’F‐ANA), both with phosphodiester and phosphorothioate linkages. The protocols described herein include araF phosphoramidite preparation, assembly on DNA synthesizers, and final deprotection and purification of oligonucleotides.
dc.publisherWiley‐VCH
dc.titleSolid‐Phase Synthesis of 2′‐Deoxy‐2′‐fluoro‐ β‐D‐Oligoarabinonucleotides (2′F‐ANA) and Their Phosphorothioate Derivatives
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153131/1/cpnc0415.pdf
dc.identifier.doi10.1002/0471142700.nc0415s10
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceTrempe, J.F., Wilds, C.J., Denisov, A.Y., Pon, R.T., Damha, M.J., and Gehring, K. 2001. NMR solution structure of an oligonucleotide hairpin with a 2′F‐ANA/RNA stem: Implications for RNase H specificity toward DNA/RNA hybrid duplexes. J. Am. Chem. Soc. 123: 4896 ‐ 4903.
dc.identifier.citedreferenceOda, Y., Iwai, S., Ohtsuka, E., Ishikawa, M., Ikehara, M., and Nakamura, H. 1993. Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy. Nucl. Acids Res. 21: 4690 ‐ 4695.
dc.identifier.citedreferencePlavec, J., Thibaudeau, C., and Chattopadhyaya, J. 1994. How does the 2′‐hydroxy group drive the pseudorotational equilibrium in nucleoside and nucleotide by the tuning of the 3′‐gauche effect? J. Am. Chem. Soc. 116: 6558 ‐ 6560.
dc.identifier.citedreferenceSangvhi, Y.S. 1998. Synthesis of nitrogen containing linkers for antisense oligonucleotides. In Carbohydrate Mimics ( Y. Chapleur, ed.) pp. 523 ‐ 536. Wiley‐VCH, Germany.
dc.identifier.citedreferenceSchmit, C., Bèvierre, M‐O., De Mesmaeker, A., and Altmann, K.‐H. 1994. The effects of 2′‐ and 3′‐alkyl substituents on oligonucleotide hybridization and stability. Bioorg. Med. Chem. Lett. 4: 1969 ‐ 1974.
dc.identifier.citedreferenceShen, L.X., Kandimalla, E.R., and Agrawal, S. 1998. Impact of mixed‐backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by E. coli RNase H. Bioorg. Med. Chem. 6: 1695 ‐ 1705.
dc.identifier.citedreferenceSørensen, M.D., Kvaernø, L., Bryld, T., Håkansson, A.E., Verbeure, B., Gaubert, G., Herdewijn, P., and Wengel, J. 2002. Alpha‐ L ‐ribo‐configured locked nucleic acid (alpha‐ L ‐LNA): Synthesis and properties. J. Am. Chem. Soc. 124: 2164 ‐ 2176.
dc.identifier.citedreferenceStill, W.C., Kahn, M., and Mitra, A. 1978. Rapid chromatographic technique for preparative separation with moderate resolution. J. Org. Chem. 43: 2923 ‐ 2925.
dc.identifier.citedreferenceTang, J.‐Y., Han, Y., Tang, J.X., and Zhang, Z. 2000. Large scale synthesis of oligonucleotide phosphorothioates using amino‐1,2,4‐dithiazoline‐5‐thione as an efficient sulfur‐transfer reagent. Org. Proc. Dev. 4: 194 ‐ 198.
dc.identifier.citedreferenceThibaudeau, C. and Chattopadhyaya, J. 1997. The discovery of intramolecular stereoelectronic forces that drive the sugar conformation in nucleosides and nucleotides. Nucleosides Nucleotides 16: 523 ‐ 529.
dc.identifier.citedreferenceThibaudeau, C., Plavec, J., Garg, N., Papchikhin, A., and Chattopadhyaya, J. 1994. How does the electronegativity of the substituent dictate the strength of the gauche effect? J. Am. Chem. Soc. 116: 4038 ‐ 4043.
dc.identifier.citedreferenceUhlmann, E. and Peyman, A. 1990. Antisense oligonucleotides: A new therapeutic principle. Chem. Rev. 90: 543 ‐ 584.
dc.identifier.citedreferenceVenkateswarlu, D. and Ferguson, D.M. 1999. Effects of C2′‐substitution on arabinonucleic acid structure and conformation. J. Am. Chem. Soc. 121: 5609 ‐ 5610.
dc.identifier.citedreferenceWalder, R.Y. and Walder, J.A. 1988. Role of RNase H in hybrid‐arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 85: 5011 ‐ 5015.
dc.identifier.citedreferenceWang, J., Verbeure, B., Luyten, I., Luyten, I., Lescrinier, E., Froeyen, M., Hendrix, C., Rosemeyer, H., Seela, F., Aerschot, A.V., and Herdewijn, P. 2000. Cyclohexene nucleic acids (CeNA): Serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. J. Am. Chem. Soc. 122: 8595 ‐ 8602.
dc.identifier.citedreferenceWengel, J., Koshkin, A., Singh, S.K., Nielsen, P., Meldgaard, M., Rajwanshi, V.K., Kumar, R., Skouv, J., Nielsen, C.B., Jacobsen, J.P., Jacobsen, N., and Olsen, C.E. 1999. LNA (Locked nucleic acid). Nucleosides Nucleotides 18: 1365 ‐ 1370.
dc.identifier.citedreferenceWilds, C.J. and Damha, M.J. 1999. Duplex recognition by oligonucleotides containing 2′‐Deoxy‐2′‐fluoro‐ D ‐arabinose and 2′‐deoxy‐2′‐fluoro‐D‐ribose. Intermolecular contacts versus sugar puckering in the stabilization of triple helical complexes. Bioconjug. Chem. 10: 299 ‐ 305.
dc.identifier.citedreferenceWilds, C.J. and Damha, M.J. 2000. 2′‐deoxy‐2′‐fluoro‐β‐D‐arabinonucleosides and oligonucleotides (2′F‐ANA): Synthesis and physicochemical studies. Nucl. Acids Res. 28: 3625 ‐ 3635.
dc.identifier.citedreferenceXu, Q., Musier‐Forsyth, K., Hammer, R.P., and Barany, G. 1996. Use of 1,2,4‐dithiazolidine‐3,5‐dione (DtsNH) and 3‐ethoxy‐1,2,4‐dithiazoline‐5‐one (EDITH) for synthesis of phosphorothioate‐containing oligodeoxyribonucleotides. Nucl. Acids Res. 24: 1602 ‐ 1607.
dc.identifier.citedreferenceCrouch and Toulmé, 1998. See above
dc.identifier.citedreferenceDamha et al., 2001. See above.
dc.identifier.citedreferenceFreier, S.M. and Altmann, K.‐H. 1997. The ups and downs of nucleic acid duplex stability: Structure‐stability studies on chemically‐modified DNA:RNA duplexes. Nucl. Acids Res. 25: 4429 ‐ 4443.
dc.identifier.citedreferenceKvaernø, L. and Wengel, J. 2001. Antisense molecules and furanose conformations—is it really that simple? Chem. Commun. 1419 ‐ 1424.
dc.identifier.citedreferenceLebedeva and Stein, 2001. See above.
dc.identifier.citedreferenceAltmann, K.‐H., Kesselring, R., Francotte, E., and Rihs, G. 1994a. 4′,6′‐Methano carbocyclic thymidine: A conformationally constrained building block for oligonucleotides. Tetrahedron Lett. 35: 2331 ‐ 2334.
dc.identifier.citedreferenceAltmann, K.‐H., Imwinkelried, M., Kesselring, R., and Rihs, G. 1994b. 1′,6′‐Methano carbocyclic thymidine: Synthesis, X‐ray crystal structure, and effect on nucleic acid duplex stability. Tetrahedron Lett. 35: 7625 ‐ 7628.
dc.identifier.citedreferenceBerger, I., Tereshko, V., Ikeda, H., Marquez, V.E., and Egli, M. 1998. Crystal structures of B‐DNA with incorporated 2′‐deoxy‐2′‐fluoro‐arabino‐furanosyl thymines: Implications of conformational preorganization for duplex stability. Nucl. Acids Res. 26: 2473 ‐ 2480.
dc.identifier.citedreferenceBergot, B.J. and Egan, W. 1992. Separation of synthetic phosphorothioate oligonucleotides from their oxygenated (phosphodiester) defect species by strong‐anion‐exchange high‐performance liquid chromatography. J. Chromatogr. 599: 35 ‐ 42.
dc.identifier.citedreferenceChristensen, N.K., Petersen, M., Nielson, P., Jacobsen, J.P., Olsen, C.E., and Wengel, J. 1998. A novel class of oligonucleotide analogues containing 2′‐ O,3′‐ C ‐linked [3.2.0]bicycloarabinonucleoside monomers: Synthesis, thermal affinity studies and molecular modeling. J. Am. Chem. Soc. 120: 5458 ‐ 5463.
dc.identifier.citedreferenceCook, P.D. 1998. Second generation antisense oligonucleotides: 2′‐modifications. Annu. Rep. Med. Chem. 33: 313 ‐ 325.
dc.identifier.citedreferenceCrouch, R.J. and Toulmé, J.J. (eds.) 1998.Ribonucleases H. INSERM, Paris.
dc.identifier.citedreferenceDamha, M.J., Meng, B., Yannopoulos, C.G., Wang, D., and Just, G. 1995. Structural basis for the RNA selectivity of oligonucleotides containing alkylsulfide internucleoside linkages and 2′‐O‐substituted 3′‐deoxyribose. Nucl. Acids Res. 19: 3967 ‐ 3973.
dc.identifier.citedreferenceDamha, M.J., Wilds, C.J., Noronha, A., Brukner, I., Borkow, G., Arion, D., and Parniak, M.A. 1998. Hybrids of RNA and arabinonucleic acids (ANA and 2′F‐ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120: 12976 ‐ 12977.
dc.identifier.citedreferenceDamha, M.J., Noronha, A.M., Wilds, C.J., Trempe, J.‐F., Denisov, A., and Gehring, K. 2001. Properties of arabinonucleic acids (ANA & 2′F‐ANA): Implications for the design of antisense therapeutics that invoke RNase H cleavage of RNA. Nucleosides Nucleotides 20: 429 ‐ 440.
dc.identifier.citedreferenceGiannaris, P.A. and Damha, M.J. 1994. Hybridization properties of oligoarabinonucleotides. Can. J. Chem. 72: 909 ‐ 918.
dc.identifier.citedreferenceIyer, R.P., Phillips, L.R., Egan, W., Regan, J.B., and Beaucage, S.L. 1990. The automated synthesis of sulfur‐containing oligodeoxyribonucleotides using 3H‐1,2‐benzodithiol‐3‐one 1,1‐dioxide as a sulfur‐transfer reagent. J. Org. Chem. 55: 4693 ‐ 4699.
dc.identifier.citedreferenceLebedeva, I. and Stein, C.A. 2001. Antisense oligonucleotides: Promise and reality. Annu. Rev. Pharmacol. Toxicol. 41: 403 ‐ 419.
dc.identifier.citedreferenceLima, W.F. and Crooke, S.T. 1997. Binding affinity and specificity of Escherichia coli RNase H1: Impact on the kinetics of catalysis of antisense oligonucleotide‐RNA hybrids. Biochemistry 36: 390 ‐ 398.
dc.identifier.citedreferenceLok, C.‐N., Viazovkina, E., Min, K‐L., Nagy, E., Wilds, C.J., Damha, M.J., and Parniak, M.A. 2002. Potent gene‐specific inhibitory properties of mixed‐backbone antisense oligonucleotides comprised of 2′‐deoxy‐2′‐fluoro‐ D ‐arabinose and 2′‐deoxyribose nucleotides. Biochemistry 41: 3457 ‐ 3467.
dc.identifier.citedreferenceMangos, M.M. and Damha, M.J. 2002. Flexible and frozen sugar‐modified nucleic acids: modulation of biological activity through furanose ring dynamics in the antisense strands. Curr. Topics Med. Chem. 2: 1145 ‐ 1169.
dc.identifier.citedreferenceManoharan, M. 1999. 2′‐Carbohydrate modifications in antisense oligonucleotide therapy: Importance of conformation, configuration and conjugation. Biochim. Biophys. Acta 1489: 117 ‐ 130.
dc.identifier.citedreferenceMinasov, G., Teplova, M., Nielsen, P., Wengel, J., and Egli, M. 2000. Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA. Biochemistry 39: 3525 ‐ 3532.
dc.identifier.citedreferenceMyers, N.M. and Dean, K.J. 2000. Sensible use of antisense: How to use oligonucleotides as research tools. TIPS 21: 19 ‐ 23.
dc.identifier.citedreferenceNakamura, H., Oda, Y., Iwai, S., Inoue, H., Ohtsuka, E., Kanaya, S., Kimura, S., Katsuda, C., Katayanagi, K., Morikawa, K., Miyashiro, H., and Ikehara, M. 1991. How does RNase H recognize a DNA:RNA hybrid? Proc. Natl. Acad. Sci. U.S.A. 88: 11535 ‐ 11539.
dc.identifier.citedreferenceNoronha, A. and Damha, M.J. 1998. Triple helices containing arabinonucleotides in the third (Hoogsteen) strand: Effects of inverted stereochemistry at the 2′‐position of the sugar moiety. Nucl. Acids Res. 26: 2665 ‐ 2671.
dc.identifier.citedreferenceNoronha, A.M., Wilds, C.J., Lok, C.‐N., Viazovkina, K., Arion, D., Parniak, M.A., and Damha, M.J. 2000. Synthesis and biophysical properties of arabinonucleic acids (ANA): Circular dichroic spectra, melting temperatures and ribonuclease H susceptibility of ANA:RNA hybrid duplexes. Biochemistry 39: 7050 ‐ 7062.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.