Show simple item record

Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta

dc.contributor.authorOlvera, Diana
dc.contributor.authorStolzenfeld, Rachel
dc.contributor.authorFisher, Emily
dc.contributor.authorNolan, Bonnie
dc.contributor.authorCaird, Michelle S
dc.contributor.authorKozloff, Kenneth M
dc.date.accessioned2020-01-13T15:18:21Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:18:21Z
dc.date.issued2019-11
dc.identifier.citationOlvera, Diana; Stolzenfeld, Rachel; Fisher, Emily; Nolan, Bonnie; Caird, Michelle S; Kozloff, Kenneth M (2019). "Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta." Journal of Bone and Mineral Research 34(11): 2061-2074.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/153136
dc.description.abstractDuring pregnancy and lactation, the maternal skeleton undergoes significant bone loss through increased resorption to provide the necessary calcium supply to the developing fetus and suckling neonate. This period of skeletal vulnerability has not been clearly associated with increased maternal fracture risk, but these physiological conditions can exacerbate an underlying metabolic bone condition like osteogenesis imperfecta. Although bisphosphonates (BPs) are commonly used in postmenopausal women, there are cases where premenopausal women taking BPs become pregnant. Given BPs’ long half‐life, there is a need to establish how BPs affect the maternal skeleton during periods of demanding metabolic bone changes that are critical for the skeletal development of their offspring. In the present study, pamidronate‐ (PAM‐) amplified pregnancy‐induced bone mass gains and lactation‐induced bone loss were prevented. This preservation of bone mass was less robust when PAM was administered at late stages of lactation compared with early pregnancy and first day of lactation. Pregnancy‐induced osteocyte osteolysis was also observed and was unaffected with PAM treatment. No negative skeletal effects were observed in offspring from PAM‐treated dams despite lactation‐induced bone loss prevention. These findings provide important insight into (1) a treatment window for when PAM is most effective in preserving maternal bone mass, and (2) the maternal changes in bone metabolism that maintain calcium homeostasis crucial for fetal and neonatal bone development. © 2019 American Society for Bone and Mineral Research
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPregnancy
dc.subject.otherlactation
dc.subject.otherosteogenesis imperfecta
dc.subject.otherbisphosphonate
dc.subject.otherpre‐clinical studies
dc.titlePamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153136/1/jbmr3831.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153136/2/jbmr3831_am.pdf
dc.identifier.doi10.1002/jbmr.3831
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceMiller SC, Shupe JG, Redd EH, Miller MA, Omura TH. Changes in bone mineral and bone formation rates during pregnancy and lactation in rats. Bone. 1986; 7 ( 4 ): 283 – 87.
dc.identifier.citedreferenceBowman BM, Miller SC. Endochondral bone growth during early pregnancy compared with pseudopregnancy in rats. Endocrine. 1997; 6 ( 2 ): 173 – 7.
dc.identifier.citedreferenceBowman BM, Miller SC. Skeletal adaptations during mammalian reproduction. J Musculoskelet Neuronal Interact. 2001; 1 ( 4 ): 347 – 55.
dc.identifier.citedreferenceVajda EG, Kneissel M, Muggenburg B, Miller SC. Increased intracortical bone remodeling during lactation in beagle dogs. Biol Reprod. 1999; 61 ( 6 ): 1439 – 44.
dc.identifier.citedreferenceTojo Y, Kurabayashi T, Honda A, Yamamoto Y, Yahata T, Takakuwa K, et al. Bone structural and metabolic changes at the end of pregnancy and lactation in rats. Am J Obstet Gynecol. 1998; 178 ( 1 Pt 1 ): 180 – 5.
dc.identifier.citedreferenceArdeshirpour L, Brian S, Dann P, VanHouten J, Wysolmerski J. Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology. 2010; 151 ( 12 ): 5591 – 601.
dc.identifier.citedreferencede Bakker CMJ, Tseng WJ, Li Y, Zhao H, Altman‐Singles AR, Jeong Y, et al. Reproduction differentially affects trabecular bone depending on its mechanical versus metabolic role. J Biomech Eng. 2017; 139 ( 11 ).
dc.identifier.citedreferenceRoss RD, Sumner DR. Bone matrix maturation in a rat model of intra‐cortical bone remodeling. Calcif Tissue Int. 2017; 101 ( 2 ): 193 – 203.
dc.identifier.citedreferenceKobayashi T, Kronenberg HM. Overview of skeletal development. Methods Mol Biol. 2014; 1130: 3 – 12.
dc.identifier.citedreferenceHeaney RP, Skillman TG. Calcium metabolism in normal human pregnancy. J Clin Endocrinol Metab. 1971; 33 ( 4 ): 661 – 70.
dc.identifier.citedreferenceBowman BM, Siska CC, Miller SC. Greatly increased cancellous bone formation with rapid improvements in bone structure in the rat maternal skeleton after lactation. J Bone Miner Res. 2002; 17 ( 11 ): 1954 – 60.
dc.identifier.citedreferenceMiller SC, Bowman BM. Rapid inactivation and apoptosis of osteoclasts in the maternal skeleton during the bone remodeling reversal at the end of lactation. Anat Rec (Hoboken). 2007; 290 ( 1 ): 65 – 73.
dc.identifier.citedreferenceYang LiC, Majeska RJ, Laudier DM, Mann R, Schaffler MB. High‐dose risedronate treatment partially preserves cancellous bone mass and microarchitecture during long‐term disuse. Bone. 2005; 37 ( 3 ): 287 – 95.
dc.identifier.citedreferenceChavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ. Histomorphometric assessment of the long‐term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997; 100 ( 6 ): 1475 – 80.
dc.identifier.citedreferenceKuroshima S, Go VA, Yamashita J. Increased numbers of nonattached osteoclasts after long‐term zoledronic acid therapy in mice. Endocrinology. 2012; 153 ( 1 ): 17 – 28.
dc.identifier.citedreferenceCroucher PI, De Hendrik R, Perry MJ, Hijzen A, Shipman CM, Lippitt J, et al. Zoledronic acid treatment of 5T2MM‐bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner Res. 2003; 18 ( 3 ): 482 – 92.
dc.identifier.citedreferenceKwiecinski GG, Krook L, Wimsatt WA. Annual skeletal changes in the little brown bat, Myotis lucifugus lucifugus, with particular reference to pregnancy and lactation. Am J Anat. 1987; 178 ( 4 ): 410 – 20.
dc.identifier.citedreferenceRasmussen P. Calcium deficiency, pregnancy, and lactation in rats. Calcif Tissue Res. 1977; 23 ( 1 ): 87 – 94.
dc.identifier.citedreferenceKaya S, Basta‐Pljakic J, Seref‐Ferlengez Z, Majeska RJ, Cardoso L, Bromage TG, et al. Lactation‐induced changes in the volume of osteocyte lacunar‐canalicular space alter mechanical properties in cortical bone tissue. J Bone Miner Res. 2017; 32 ( 4 ): 688 – 97.
dc.identifier.citedreferenceClarke MV, Russell PK, Findlay DM, Sastra S, Anderson PH, Skinner JP, et al. A role for the calcitonin receptor to limit bone loss during lactation in female mice by inhibiting osteocytic osteolysis. Endocrinology. 2015; 156 ( 9 ): 3203 – 14.
dc.identifier.citedreferenceTazawa K, Lafage‐Proust MH, Bloomfield S, Alexandre C, Vico L. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J Bone Miner Metab. 2004; 22 ( 6 ): 524 – 9.
dc.identifier.citedreferenceKovacs CS. Maternal mineral and bone metabolism during pregnancy, lactation, and post‐weaning recovery. Physiol Rev. 2016; 96 ( 2 ): 449 – 547.
dc.identifier.citedreferenceOtis EM, Brent R. Equivalent ages in mouse and human embryos. Anatom Rec. 1954; 120 ( 1 ): 33 – 63.
dc.identifier.citedreferenceWanek N, Muneoka K, Holler‐Dinsmore G, Burton R, Bryant SV. A staging system for mouse limb development. J Exp Zool. 1989; 249 ( 1 ): 41 – 9.
dc.identifier.citedreferenceDutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016; 152: 244 – 8.
dc.identifier.citedreferenceSengupta P. The laboratory rat: relating its age with human’s. Int J Preven Med. 2013; 4 ( 6 ): 624 – 30.
dc.identifier.citedreferenceSanz‐Salvador L, García‐Pérez MÁ, Tarín JJ, Cano A. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol. 2015; 172 ( 2 ): R53 – 65.
dc.identifier.citedreferenceRuiter‐Ligeti J, Czuzoj‐Shulman N, Spence AR, Tulandi T, Abenhaim HA. Pregnancy outcomes in women with osteogenesis imperfecta: a retrospective cohort study. J Perinatol. 2016; 36 ( 10 ): 828 – 31.
dc.identifier.citedreferenceCozzolino M, Perelli F, Maggio L, Coccia ME, Quaranta M, Gizzo S, et al. Management of osteogenesis imperfecta type I in pregnancy; a review of literature applied to clinical practice. Arch Gynecol Obstet. 2016; 293 ( 6 ): 1153 – 9.
dc.identifier.citedreferenceBellur S, Jain M, Cuthbertson D, Krakow D, Shapiro JR, Steiner RD, et al. Cesarean delivery is not associated with decreased at‐birth fracture rates in osteogenesis imperfecta. Genet Med. 2016; 18 ( 6 ): 570 – 6.
dc.identifier.citedreferenceVogel TM, Ratner EF, Thomas RC Jr, Chitkara U. Pregnancy complicated by severe osteogenesis imperfecta: a report of two cases. Anesth Analg. 2002; 94 ( 5 ): 1315 – 17.
dc.identifier.citedreferenceMcAllion SJ, Paterson CR. Musculo‐skeletal problems associated with pregnancy in women with osteogenesis imperfecta. J Obstet Gynaecol. 2002; 22 ( 2 ): 169 – 72.
dc.identifier.citedreferenceCubert R, Cheng EY, Mack S, Pepin MG, Byers PH. Osteogenesis imperfecta: mode of delivery and neonatal outcome. Obstet Gynecol. 2001; 97 ( 1 ): 66 – 9.
dc.identifier.citedreferenceRoberts JM, Solomons CC. Management of pregnancy in osteogenesis imperfecta: new perspectives. Obstet Gynecol. 1975; 45 ( 2 ): 168 – 70.
dc.identifier.citedreferenceDrake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008; 83 ( 9 ): 1032 – 45.
dc.identifier.citedreferenceGatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tatò L, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005; 20 ( 5 ): 758 – 63.
dc.identifier.citedreferenceDwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014, ( 7 ):CD005088.
dc.identifier.citedreferenceBishop N, Harrison R, Ahmed F, Shaw N, Eastell R, Campbell M, et al. A randomized, controlled dose‐ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res. 2010; 25 ( 1 ): 32 – 40.
dc.identifier.citedreferenceChevrel G, Schott AM, Fontanges E, Charrin JE, Lina‐Granade G, Duboeuf F, et al. Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3‐year randomized placebo‐controlled trial. J Bone Miner Res. 2006; 21 ( 2 ): 300 – 6.
dc.identifier.citedreferenceHald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta‐analysis of placebo‐controlled trials. J Bone Miner Res. 2015; 30 ( 5 ): 929 – 33.
dc.identifier.citedreferenceWard LM, Rauch F, Whyte MP, D’Astous J, Gates PE, Grogan D, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo‐controlled study. J Clin Endocrinol Metab. 2011; 96 ( 2 ): 355 – 64.
dc.identifier.citedreferenceLetocha AD, Cintas HL, Troendle JF, Reynolds JC, Cann CE, Chernoff EJ, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short‐term functional improvement. J Bone Miner Res. 2005; 20 ( 6 ): 977 – 86.
dc.identifier.citedreferenceMcLendon AN, Woodis CB. A review of osteoporosis management in younger premenopausal women. Women’s Health. 2014; 10 ( 1 ): 59 – 77.
dc.identifier.citedreferenceMcNicholl DM, Heaney LG. The safety of bisphosphonate use in pre‐menopausal women on corticosteroids. Curr Drug Saf. 2010; 5 ( 2 ): 182 – 7.
dc.identifier.citedreferenceCohen A. Should bisphosphonates be used in premenopausal women? Maturitas. 2010; 66 ( 1 ): 3 – 4.
dc.identifier.citedreferenceKacew S. Adverse effects of drugs and chemicals in breast milk on the nursing infant. J Clin Pharmacol. 1993; 33 ( 3 ): 213 – 21.
dc.identifier.citedreferenceKoren G, Pastuszak A, Ito S. Drugs in pregnancy. N Engl J Med. 1998; 338 ( 16 ): 1128 – 37.
dc.identifier.citedreferenceAmerican Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108(3):776–89.
dc.identifier.citedreferenceBartu A, Dusci LJ, Ilett KF. Transfer of methylamphetamine and amphetamine into breast milk following recreational use of methylamphetamine. Brit J Clin Pharmacol. 2009; 67 ( 4 ): 455 – 9.
dc.identifier.citedreferenceDe Nijs RN. Glucocorticoid‐induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med. 2008; 99 ( 1 ): 23 – 43.
dc.identifier.citedreferenceKitazaki S, Mitsuyama K, Masuda J, Harada K, Yamasaki H, Kuwaki K, et al. Clinical trial: comparison of alendronate and alfacalcidol in glucocorticoid‐associated osteoporosis in patients with ulcerative colitis. Aliment Pharmacol Ther. 2009; 29 ( 4 ): 424 – 30.
dc.identifier.citedreferenceChoe EY, Song JE, Park KH, Seok H, Lee EJ, Lim SK, et al. Effect of teriparatide on pregnancy and lactation‐associated osteoporosis with multiple vertebral fractures. J Bone Miner Metabol. 2012; 30 ( 5 ): 596 – 601.
dc.identifier.citedreferenceTanrıkulu S, Gül N, Yalın GY, Tekin S, Selçukbiricik OS, Üzüm AK, et al. Osteogenesis imperfecta presenting with fractures in pregnancy or lactation period: report of three cases. J Clin Res Pediatr Endocrinol. 2015; 7: 82.
dc.identifier.citedreferenceYang T, Walker MC, Krewski D, Yang Q, Nimrod C, Garner P, et al. Maternal characteristics associated with pregnancy exposure to FDA category C, D, and X drugs in a Canadian population. Pharmacoepidemiol Drug Saf. 2008; 17 ( 3 ): 270 – 77.
dc.identifier.citedreferencePatlas N, Golomb G, Yaffe P, Pinto T, Breuer E, Ornoy A. Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology. 1999; 60 ( 2 ): 68 – 73.
dc.identifier.citedreferenceGraepel P, Bentley P, Fritz H, Miyamoto M, Slater SR. Reproduction toxicity studies with pamidronate. Arzneimittelforschung. 1992; 42 ( 5 ): 654 – 67.
dc.identifier.citedreferenceMinsker DH, Manson JM, Peter CP. Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol. 1993; 121 ( 2 ): 217 – 23.
dc.identifier.citedreferenceOkazaki A, Matsuzawa T, Takeda M, York RG, Barrow PC, King VC, et al. Intravenous reproductive and developmental toxicity studies of cimadronate (YM175), a novel bisphosphonate, in rats and rabbits. J Toxicol Sci. 1995; 20 ( Suppl 1 ): 1 – 13.
dc.identifier.citedreferenceYarrington JT, Capen CC, Black HE, Re R, Potts JT Jr, Geho WB. Experimental parturient hypocalcemia in cows following prepartal chemical inhibition of bone resportion. Am J Pathol. 1976; 83 ( 3 ): 569 – 88.
dc.identifier.citedreferenceBrommage R, Baxter DC. Inhibition of bone mineral loss during lactation by Cl2MBP. Calcif Tissue Int. 1990; 47 ( 3 ): 169 – 72.
dc.identifier.citedreferenceDunlop DJ, Soukop M, McEwan HP. Antenatal administration of aminopropylidene diphosphonate. Ann Rheum Dis. 1990; 49 ( 11 ): 955.
dc.identifier.citedreferenceIllidge TM, Hussey M, Godden CW. Malignant hypercalcaemia in pregnancy and antenatal administration of intravenous pamidronate. Clin Oncol (R Coll Radiol). 1996; 8 ( 4 ): 257 – 8.
dc.identifier.citedreferenceHassen‐Zrour S, Korbâa W, Béjia I, Saidani Z, Bergaoui N. Maternal and fetal outcome after long‐term bisphosphonate exposure before conception. Osteoporos Int. 2010; 21 ( 4 ): 709 – 10.
dc.identifier.citedreferenceChan B, Zacharin M. Maternal and infant outcome after pamidronate treatment of polyostotic fibrous dysplasia and osteogenesis imperfecta before conception: a report of four cases. J Clin Endocrinol Metab. 2006; 91 ( 6 ): 2017 – 20.
dc.identifier.citedreferenceMastaglia SR, Watman NP, Oliveri B. Intravenous bisphosphonate treatment and pregnancy: its effects on mother and infant bone health. Osteoporos Int. 2010; 21 ( 11 ): 1959 – 62.
dc.identifier.citedreferenceSiminoski K, Fitzgerald AA, Flesch G, Gross MS. Intravenous pamidronate for treatment of reflex sympathetic dystrophy during breast feeding. J Bone Miner Res. 2000; 15 ( 10 ): 2052 – 5.
dc.identifier.citedreferenceMunns CF, Rauch F, Ward L, Glorieux FH. Maternal and fetal outcome after long‐term pamidronate treatment before conception: a report of two cases. J Bone Miner Res. 2004; 19 ( 10 ): 1742 – 5.
dc.identifier.citedreferenceRutgers‐Verhage AR, deVries TW, Torringa MJ. No effects of bisphosphonates on the human fetus. Birth Defects Res A Clin Mol Teratol. 2003; 67 ( 3 ): 203 – 4.
dc.identifier.citedreferenceLevy S, Fayez I, Taguchi N, Han JY, Aiello J, Matsui D, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009; 44 ( 3 ): 428 – 30.
dc.identifier.citedreferenceOrnoy A, Wajnberg R, Diav‐Citrin O. The outcome of pregnancy following pre‐pregnancy or early pregnancy alendronate treatment. Reproduct Toxicol. 2006; 22 ( 4 ): 578 – 79.
dc.identifier.citedreferenceCabar FR, Nomura RM, Zugaib M. Maternal and fetal outcome of pamidronate treatment before conception: a case report. Clin Exp Rheumatol. 2007; 25 ( 2 ): 344 – 5.
dc.identifier.citedreferenceForlino A, Porter FD, Lee EJ, Westphal H, Marini JC. Use of the Cre/lox recombination system to develop a non‐lethal knock‐in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J Biol Chem. 1999; 274 ( 53 ): 37923 – 31.
dc.identifier.citedreferenceKozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res. 2004; 19 ( 4 ): 614 – 22.
dc.identifier.citedreferenceUveges TE, Collin‐Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, et al. Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res. 2008; 23 ( 12 ): 1983 – 94.
dc.identifier.citedreferenceUveges TE, Kozloff KM, Ty JM, Ledgard F, Raggio CL, Gronowicz G, et al. Alendronate treatment of Brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res. 2009; 24 ( 5 ): 849 – 59.
dc.identifier.citedreferenceSinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013; 28 ( 1 ): 73 – 80.
dc.identifier.citedreferenceSinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014; 25 ( 8 ): 2097 – 107.
dc.identifier.citedreferenceSinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015; 71: 115 – 23.
dc.identifier.citedreferencePerosky JE, Khoury BM, Jenks TN, Ward FS, Cortright K, Meyer B, et al. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone. 2016; 93: 79 – 85.
dc.identifier.citedreferenceOlvera D, Stolzenfeld R, Marini JC, Caird MS, Kozloff KM. Low dose of bisphosphonate enhances sclerostin antibody‐induced trabecular bone mass gains in Brtl/+ osteogenesis imperfecta mouse model. J Bone Miner Res. 2018; 33 ( 7 ): 1272 – 82.
dc.identifier.citedreferenceKawamoto T. Use of a new adhesive film for the preparation of multi‐purpose fresh‐frozen sections from hard tissues, whole‐animals, insects and plants. Arch Histol Cytol. 2003; 66 ( 2 ): 123 – 43.
dc.identifier.citedreferenceLiu XS, Ardeshirpour L, VanHouten JN, Shane E, Wysolmerski JJ. Site‐specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. J Bone Miner Res. 2012; 27 ( 4 ): 865 – 75.
dc.identifier.citedreferenceQing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012; 27 ( 5 ): 1018 – 29.
dc.identifier.citedreferenceWysolmerski JJ. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone. 2013; 54 ( 2 ): 230 – 6.
dc.identifier.citedreferenceWysolmerski JJ. Osteocytic osteolysis: time for a second look? Bonekey Rep. 2012; 1: 229.
dc.identifier.citedreferenceDjokanovic N, Klieger‐Grossmann C, Koren G. Does treatment with bisphosphonates endanger the human pregnancy? J Obstet Gynaecol Can. 2008; 30 ( 12 ): 1146 – 8.
dc.identifier.citedreferenceStathopoulos IP, Liakou CG, Katsalira A, Trovas G, Lyritis GG, Papaioannou NA, et al. The use of bisphosphonates in women prior to or during pregnancy and lactation. Hormones (Athens). 2011; 10 ( 4 ): 280 – 91.
dc.identifier.citedreferenceKovacs CS, Kronenberg HM. Maternal‐fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev. 1997; 18 ( 6 ): 832 – 72.
dc.identifier.citedreferenceSowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996; 11 ( 8 ): 1052 – 60.
dc.identifier.citedreferenceKirby BJ, Ardeshirpour L, Woodrow JP, Wysolmerski JJ, Sims NA, Karaplis AC, et al. Skeletal recovery after weaning does not require PTHrP. J Bone Miner Res. 2011; 26 ( 6 ): 1242 – 51.
dc.identifier.citedreferenceWendelboe MH, Thomsen JS, Henriksen K, Vegger JB, Brüel A. Zoledronate prevents lactation induced bone loss and results in additional post‐lactation bone mass in mice. Bone. 2016; 87: 27 – 36.
dc.identifier.citedreferenceMastaglia SR, Watman NP, Oliveri B. Intravenous bisphosphonate treatment and pregnancy: its effects on mother and infant bone health. Osteoporos Int. 2010; 21 ( 11 ): 1959 – 62.
dc.identifier.citedreferenceZeni SN, Di Gregorio S, Mautalen C. Bone mass changes during pregnancy and lactation in the rat. Bone. 1999; 25 ( 6 ): 681 – 5.
dc.identifier.citedreferenceBenzie D, Boyne A, Dalgarno A, Duckworth J, Hill R, Walker D. Studies of the skeleton of the sheep I. The effect of different levels of dietary calcium during pregnancy and lactation on individual bones. J Agricult Sci. 2009; 46 ( 4 ): 425 – 40.
dc.identifier.citedreferenceArantes HP, Silva AGd, Lazaretti‐Castro M. Bisphosphonates in the treatment of metabolic bone diseases. Arquivos Brasileiros de Endocrinologia & Metabologia. 2010; 54: 206 – 12.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.