Show simple item record

Selection of Transfected Mammalian Cells

dc.contributor.authorMortensen, Richard M.
dc.contributor.authorKingston, Robert E.
dc.date.accessioned2020-01-13T15:18:46Z
dc.date.available2020-01-13T15:18:46Z
dc.date.issued2009-04
dc.identifier.citationMortensen, Richard M.; Kingston, Robert E. (2009). "Selection of Transfected Mammalian Cells." Current Protocols in Molecular Biology 86(1): 9.5.1-9.5.13.
dc.identifier.issn1934-3639
dc.identifier.issn1934-3647
dc.identifier.urihttps://hdl.handle.net/2027.42/153151
dc.description.abstractTo determine the function of a gene in vitro, expression in heterologous cells is often employed. This can be done by transient expression, but often requires a more permanent expression of the gene and the creation of a cell line. This process can involve decisions as to the nature of construct used for expression, and invariably uses some strategy to select the transfected cells. Typically, these strategies use one of a number of genes that confer resistance to an added drug that will kill untransfected cells but not the transfected cells (positive selection). Alternatively, sometimes the strategy uses a gene that will confer sensitivity to a compound and kills the transfected cells (negative selection). This chapter discusses some of the strategies and genes used in creating cell line for in vitro study of gene function. Curr. Protoc. Mol. Biol. 86:9.5.1‐9.5.13. © 2009 by John Wiley & Sons, Inc.
dc.publisherIRL Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFlp‐FRT
dc.subject.otherstable integration
dc.subject.otherselection
dc.subject.othermammalian cell
dc.subject.otherstable transfection
dc.subject.otherselection marker
dc.subject.otherCre‐lox
dc.subject.otherexpression
dc.titleSelection of Transfected Mammalian Cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153151/1/cpmb0905.pdf
dc.identifier.doi10.1002/0471142727.mb0905s86
dc.identifier.sourceCurrent Protocols in Molecular Biology
dc.identifier.citedreferenceMulligan, R.C. and Berg, P. 1981. Selection for animal cells that express the E. coli gene coding for xanthine‐guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 78: 2072 ‐ 2076.
dc.identifier.citedreferenceNo, D., Yao, T.P., and Evans, R.M. 1996. Ecdysone‐inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93: 3346 ‐ 3351.
dc.identifier.citedreferencePalmer, T.D., Hock, R.A., Osborne, W.R.A., and Miller, A.D. 1987. Efficient retrovirus‐mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine‐deficient human. Proc. Natl. Acad. Sci. U.S.A. 84: 1055 ‐ 1059.
dc.identifier.citedreferencePerucho, M., Hanahan, D., and Wigler, M. 1980. Genetic and physical linkage of exogenous sequences in transformed cells. Cell 22: 309 ‐ 317.
dc.identifier.citedreferenceRobertson, E.J. 1987. Embryo‐derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach ( E.J. Robertson, ed.)pp. 71 ‐ 112. IRL Press, Oxford and New York.
dc.identifier.citedreferenceRobins, D.M., Ripley, S., Henderson, A.S., and Axel, R. 1981. Transforming DNA integrates into the host chromosome. Cell 23: 29 ‐ 39.
dc.identifier.citedreferenceSimonsen, C.C. and Levinson, A.D. 1983. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. U.S.A. 80: 2495 ‐ 2499.
dc.identifier.citedreferenceSouthern, P.J. and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Gen. 1: 327 ‐ 341.
dc.identifier.citedreferenceGritz, L. and Davies, J. 1983. Plasmid‐encoded hygromycin‐ B resistance: The sequence of hygromycin‐ B ‐phosphotransferase gene and its expression in E. coli and S. cerevisiae. Gene 25: 179 ‐ 188.
dc.identifier.citedreferenceHartman, S.C. and Mulligan, R.C. 1988. Two dominant‐acting selectable markers for gene transfer studies in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 85: 8047 ‐ 8051.
dc.identifier.citedreferenceKaufman, R.J., Murtha, P., Ingolia, D.E., Yeung, C‐Y., and Kellems, R.E. 1986. Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 83: 3136 ‐ 3140.
dc.identifier.citedreferenceKozak, M. 1989. The scanning model for translation: An update. J. Cell Biol. 108: 229 ‐ 241.
dc.identifier.citedreferenceLittlefield, J.W. 1964. Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145: 709 ‐ 710.
dc.identifier.citedreferenceMullen, C.A., Kilstrup, M., and Blaese, R.M. 1992. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5‐fluorocytosine: A negative selection system. Proc. Natl. Acad. Sci. U.S.A. 89: 33 ‐ 37.
dc.identifier.citedreferenceMulsant, P., Gatignol, A., Dalens, M., and Tiraby, G. 1988. Phleomycin resistance as a dominant selectable marker in CHO cells. Somatic Cell Mol. Genet. 14: 243 ‐ 252.
dc.identifier.citedreferenceYagi, T., Ikawa, Y., Yoshida, K., Shigetani, Y., Takeda, N., Mabuchi, I., Yamamoto, T., and Aizawa, S. 1990. Homologous recombination at c‐fyn locus of mouse embryonic stem cells with use of diphtheria toxin A‐fragment gene in negative selection. Proc. Natl. Acad. Sci. U.S.A. 87: 9918 ‐ 9922.
dc.identifier.citedreferenceWigler, M., Silverstein, S., Lee, L‐S., Pellicer, A., Cheng, Y.‐C., and Axel, R. 1977. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11: 223 ‐ 232.
dc.identifier.citedreferenceWei, K. and Huber, B.E. 1996. Cytosine deaminase gene as a positive selection marker. J. Biol. Chem. 271: 3812 ‐ 3816.
dc.identifier.citedreferenceSugiyama, M., Thompson, C.J., Kumagai, T., Suzuki, K., Deblaere, R., Villarroel, R., and Davies, J. 1994. Characterisation by molecular cloning of two genes from Streptomyces verticillus encoding resistance to bleomycin. Gene 151: 11 ‐ 16.
dc.identifier.citedreferenceStaschke, K.A., Colacino, J.M., Mabry, T.E., and Jones, C.D. 1994. The in vitro anti‐hepatitis B virus activity of FIAU [1‐(2′ ‐deoxy‐2′‐fluoro‐1‐β‐ D ‐arabinofuranosyl‐5‐iodo)uracil] is selective, reversible, and determined, at least in part, by the host cell. Antivir. Res. 23: 45 ‐ 61.
dc.identifier.citedreferenceCheng, Y.C., Huang, E.S., Lin, J.C., Mar, E.C., Pagano, J.S., Dutschman, G.E., and Grill, S.P. 1983. Unique spectrum of activity of 9‐[(1,3‐dihydroxy‐2‐propoxy)methyl]guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1. Proc. Natl. Acad. Sci. U.S.A. 80: 2767 ‐ 2770.
dc.identifier.citedreferencede la Luna, S., Soria, I., Pulido, D., Ortin, J., and Jimenez, A. 1988. Efficient transformation of mammalian cells with constructs containing a puromycin‐resistance marker. Gene 62: 121 ‐ 126.
dc.identifier.citedreferenceFukushige, S. and Sauer, B. 1992. Genomic targeting with a positive‐ selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 89: 7905 ‐ 7909.
dc.identifier.citedreferenceGossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89: 5547 ‐ 5551.
dc.identifier.citedreferenceGossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766 ‐ 1769.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.