Show simple item record

2′‐Hydroxyl‐Protecting Groups that are Either Photochemically Labile or Sensitive to Fluoride Ions

dc.contributor.authorMiller, Tod J.
dc.contributor.authorSchwartz, Miriam E.
dc.contributor.authorGough, Geoffrey R.
dc.date.accessioned2020-01-13T15:19:28Z
dc.date.available2020-01-13T15:19:28Z
dc.date.issued2000-12
dc.identifier.citationMiller, Tod J.; Schwartz, Miriam E.; Gough, Geoffrey R. (2000). "2′‐Hydroxyl‐Protecting Groups that are Either Photochemically Labile or Sensitive to Fluoride Ions." Current Protocols in Nucleic Acid Chemistry 3(1): 2.5.1-2.5.36.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/153181
dc.description.abstractProtected ribonucleotide monomers are more difficult to obtain than their 2′‐deoxy counterparts because of the need to protect the 2′‐hydroxy function. This unit describes the stepwise preparation of suitably 2′‐protected ribonucleosides using two protecting groups: 2‐nitrobenzyloxymethyl (NBOM) and tert‐butyldimethylsilyl (TBDMS). In addition, details are given for protecting the 5′‐hydroxyl and the nucleobase, yielding nucleosides that are easily converted to phosphoramidite or H‐phosphonate derivatives for automated oligoribonucleotide synthesis.
dc.publisherWiley Periodicals, Inc.
dc.title2′‐Hydroxyl‐Protecting Groups that are Either Photochemically Labile or Sensitive to Fluoride Ions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153181/1/cpnc0205.pdf
dc.identifier.doi10.1002/0471142700.nc0205s03
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceOhtsuka, E., Nakagawa, E., Tanaka, T., Markham, A.F., and Ikehara, M. 1978. Studies on transfer ribonucleic acids and related compounds. XXI. Synthesis and properties of guanine rich fragments from E. coli tRNA fMet 5′ end. Chem. Pharm. Bull. 26: 2998 ‐ 3006.
dc.identifier.citedreferenceSchwartz, M.E., Breaker, R.R., Asteriadis, G.T., deBear, J.S., and Gough, G.R. 1992. Rapid synthesis of oligoribonucleotides using 2′‐ O ‐(2‐nitrobenzyloxymethyl)‐protected monomers. BioMed. Chem. Lett. 2: 1019 ‐ 1024.
dc.identifier.citedreferenceWincott et al., 1995. See above.
dc.identifier.citedreferenceUsman et al., 1987. See above.
dc.identifier.citedreferenceSchwartz et al., 1992. See above.
dc.identifier.citedreferenceWincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceWatanabe, K.A. and Fox, J.J. 1966. A simple method for selective acylation of cytidine on the 4‐amino group. Angew. Chem. Int. Ed. Engl. 5: 579 ‐ 580.
dc.identifier.citedreferenceUsman, N., Ogilvie, K.K., Jiang, M.‐Y., and Cedergren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′‐ O ‐silylated ribonucleoside 3′‐ O‐ phosphoramidites on a controlled pore glass support: Synthesis of a 43‐nucleotide sequence similar to the 3′‐half molecule of an Escherichia coli formylmethionine tRNA. J. Am. Chem. Soc. 109: 7845 ‐ 7854.
dc.identifier.citedreferenceTi, G.S., Gaffney, B.L., and Jones, R.A. 1982. Transient protection: Efficient one‐flask synthesis of protected deoxynucleosides. J. Am. Chem. Soc. 104: 1316 ‐ 1319.
dc.identifier.citedreferenceWagner, D., Verheyden, J.P.H., and Moffatt, J.G. 1974. Preparation and synthetic utility of some organotin derivatives of nucleosides. J. Org. Chem. 39: 24 ‐ 30.
dc.identifier.citedreferenceSung, W.L. 1982. Synthesis of 4‐(1,2,4‐triazol‐1‐yl)pyrimidin‐2(1 H )‐one ribonucleotide and its application in synthesis of oligoribonucleotides. J. Org. Chem. 47: 3623 ‐ 3628.
dc.identifier.citedreferenceSinha, N.D., Davis, P., Usman, N., Perez, J., Hodge, R., Kremsky, J., and Casale, R. 1993. Labile exocyclic amine protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facilitating N‐deacylation, minimizing depurination and chain degradation. Biochimie 75: 13 ‐ 23.
dc.identifier.citedreferenceSinha, N.D., Biernat, J., McManus, J., and Köster, H. 1984. Polymer support oligonucleotide synthesis XVIII: Use of β‐cyanoethyl‐N,N‐dialkylamino‐/N‐morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl. Acids Res. 12: 4539 ‐ 4557.
dc.identifier.citedreferenceBenneche, T., Strande, P., and Undheim, K. 1983. A new synthesis of chloromethyl benzyl ethers. Synthesis. 1983: 762 ‐ 763.
dc.identifier.citedreferenceChaix, C., Duplaa, A.M., Molko, D., and Teoule, R. 1989. Solid phase synthesis of the 5′‐half of the initiator t‐RNA from B. subtilis. Nucl. Acids Res. 17: 7381 ‐ 7393.
dc.identifier.citedreferenceFromageot, H.P.M., Griffin, B.E., Reese, C.B., Sulston, J.E., and Trentham, D.R. 1966. Orientation of ribonucleoside derivatives by proton magnetic resonance spectroscopy. Tetrahedron 22: 705 ‐ 710.
dc.identifier.citedreferenceHakimelahi, G.H., Proba, Z.A., and Ogilvie, K.K. 1982. New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem. 60: 1106 ‐ 1113.
dc.identifier.citedreferenceIgolen, J. and Morin, C. 1980. Rapid synthesis of protected 2′‐deoxycytidine derivatives. J. Org. Chem. 45: 4802 ‐ 4804.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.