Show simple item record

Realizing the potential of positron emission tomography with 18F‐fluorodeoxyglucose to improve the treatment of Alzheimer’s disease

dc.contributor.authorFoster, Norman L.
dc.contributor.authorWang, Angela Y.
dc.contributor.authorTasdizen, Tolga
dc.contributor.authorFletcher, P. Thomas
dc.contributor.authorHoffman, John M.
dc.contributor.authorKoeppe, Robert A.
dc.date.accessioned2020-01-13T15:21:48Z
dc.date.available2020-01-13T15:21:48Z
dc.date.issued2008-01
dc.identifier.citationFoster, Norman L.; Wang, Angela Y.; Tasdizen, Tolga; Fletcher, P. Thomas; Hoffman, John M.; Koeppe, Robert A. (2008). "Realizing the potential of positron emission tomography with 18F‐fluorodeoxyglucose to improve the treatment of Alzheimer’s disease." Alzheimer’s & Dementia 4(1S1): S29-S36.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/153271
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Alzheimer’s Association
dc.subject.otherPositron emission tomography
dc.subject.otherBrain imaging
dc.subject.otherAlzheimer’s disease
dc.subject.otherClinical trial design
dc.subject.otherImage analysis
dc.titleRealizing the potential of positron emission tomography with 18F‐fluorodeoxyglucose to improve the treatment of Alzheimer’s disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153271/1/alzjjalz200710004.pdf
dc.identifier.doi10.1016/j.jalz.2007.10.004
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceG. Chetelat, B. Desgranges, V. de la Sayette, F. Viader, F. Eustache, J.C. Baron. Mild cognitive impairment: can FDG‐PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 60: 2003; 1374 – 1377
dc.identifier.citedreferenceN.L. Foster. Neuropsychiatry of dementing disorders. B.S. Fogel, R.B. Schiffer, S.M. Rao. Neuropsychiatry. 2nd ed. 2003; Lippincott Williams & Wilkins: New York; 1034 – 1070
dc.identifier.citedreferenceS. Minoshima, N.L. Foster, A.A.F. Sima, K.A. Frey, R.L. Albin, D.E. Kuhl. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 50: 2001; 358 – 365
dc.identifier.citedreferenceA.R. Varma, J.S. Snowden, J.J. Lloyd, P.R. Talbot, D.M. Mann, D. Neary. Evaluation of the NINCDS‐ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 66: 1999; 184 – 188
dc.identifier.citedreferenceN.L. Foster, J.L. Heidebrink, C.M. Clark, W.J. Jagust, S.E. Arnold, N.R. Barbas, et al. FDG‐PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 130: 2007; 2616 – 2635
dc.identifier.citedreferenceS. Minoshima, B.J. Giordani, S. Berent, K.A. Frey, N.L. Foster, D.E. Kuhl. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 42: 1997; 85 – 94
dc.identifier.citedreferenceG.E. Alexander, K. Chen, P. Pietrini, S.I. Rapoport, E.M. Reiman. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 159: 2002; 738 – 745
dc.identifier.citedreferenceB. Dubois, H.H. Feldman, C. Jacova, S.T. DeKosky, P. Bargerger‐Gateau, J. Cummings, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6: 2007; 734 – 746
dc.identifier.citedreferenceN.L. Foster. A new framework for the diagnosis of Alzheimer’s disease. Lancet Neurol. 6: 2007; 667 – 669
dc.identifier.citedreferenceE.M. Reiman, R.J. Caselli, L.S. Yun, K. Chen, D. Bandy, S. Minoshima, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. N Engl J Med. 334: 1996; 752 – 758
dc.identifier.citedreferenceG.W. Small, L.M. Ercoli, D.H. Silverman, S.C. Huang, S. Komo, S.Y. Bookheimer, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 97: 2000; 6037 – 6042
dc.identifier.citedreferenceS. Berent, B. Giordani, N. Foster, S. Minoshima, R. Lajiness‐O’Neill, R. Koeppe, et al. Neuropsychological function and cerebral glucose utilization in isolated memory impairment and Alzheimer’s disease. J Psychiatr Res. 33: 1999; 7 – 16
dc.identifier.citedreferenceB.J. Bacskai, M.P. Frosch, S.H. Freeman, S.B. Raymond, J.C. Augustinack, K.A. Johnson, et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol. 64: 2007; 431 – 434
dc.identifier.citedreferenceD. Anchisi, B. Borroni, M. Franceschi, N. Kerrouche, E. Kalbe, B. Beuthien‐Beumann, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 62: 2005; 1728 – 1733
dc.identifier.citedreferenceL.J. Thal, P.A. Fuld, D.M. Masur, N.S. Sharpless. Oral physostigmine and lecithin improve memory in Alzheimer’s disease. Ann Neurol. 13: 1983; 491 – 496
dc.identifier.citedreferenceM.F. Mendez, A.R. Mastri, J.H. Sung, W.H. Frey 2nd. Clinically diagnosed Alzheimer disease: neuropathologic findings in 650 cases. Alzheimer Dis Assoc Disord. 6: 1992; 35 – 43
dc.identifier.citedreferenceJ.T. Becker, F. Boller, O.L. Lopez, J. Saxton, K.L. McGonigle. The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis. Arch Neurol. 51: 1994; 585 – 594
dc.identifier.citedreferenceD. Blacker, M.S. Albert, S.S. Bassett, R.C. Go, L.E. Harrell, M.F. Folstein. Reliability and validity of NINCDS‐ADRDA criteria for Alzheimer’s disease: the National Institute of Mental Health Genetics Initiative. Arch Neurol. 51: 1994; 1198 – 1204
dc.identifier.citedreferenceR. Mielke, R. Schroder, G.R. Fink, J. Kessler, K. Herholz, W.D. Heiss. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol. 91: 1996; 174 – 179 (Berl)
dc.identifier.citedreferenceJ.M. Hoffman, K.A. Welsh‐Bohmer, M. Hanson, B. Crain, C. Hulette, N. Earl, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 41: 2000; 1920 – 1928
dc.identifier.citedreferenceD.H. Silverman, G.W. Small, C.Y. Chang, C.S. Lu, M.A. Kung De Aburto, W. Chen, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long‐term outcome. JAMA. 286: 2001; 2120 – 2127
dc.identifier.citedreferenceE. Ratnavalli, C. Brayne, K. Dawson, J.R. Hodges. The prevalence of frontotemporal dementia. Neurology. 58: 2002; 1615 – 1621
dc.identifier.citedreferenceB. Winblad, J. Cummings, N. Andreasen, G. Grossberg, M. Onofrj, C. Sadowsky, et al. A six‐month double‐blind, randomized, placebo‐controlled study of a transdermal patch in Alzheimer’s disease: rivastigmine patch versus capsule. Int J Geriatr Psychiatry. 22: 2007; 456 – 467
dc.identifier.citedreferenceR.J. Caselli. Focal and asymmetric cortical degenerative syndromes. Adv Neurol. 82: 2000; 35 – 51
dc.identifier.citedreferenceN.L. Foster, T.N. Chase, P. Fedio, N.J. Patronas, R.A. Brooks, G. Di Chiro. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology. 33: 1983; 961 – 965
dc.identifier.citedreferenceP.T. Fletcher, S. Powell, N.L. Foster, S.C. Joshi. Quantifying metabolic asymmetry modulo structure in Alzheimer’s disease. Inf Process Med Imaging. 20: 2007; 446 – 457
dc.identifier.citedreferenceM. Grundman, D. Sencakova, C.R. Jack, R.C. Petersen, H.T. Kim, A.N. Schultz, et al. Use of brain MRI volumetric analysis in a mild cognitive impairment trial to delay the diagnosis of Alzheimer’s disease. H. Fillet, A. O’Connell. Drug discovery and development for Alzheimer’s disease 2000. 2001; Springer: New York; 24 – 32
dc.identifier.citedreferenceS.G. Mueller, M.W. Weiner, L.J. Thal, R.C. Petersen, C. Jack, W. Jagust, et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin N Am. 15: 2005; 869 – 877
dc.identifier.citedreferenceM. Gado, C.P. Hughes, W. Danziger, D. Chi, G. Jost, L. Berg. Volumetric measurements of the cerebrospinal fluid spaces in demented subjects and controls. Radiology. 144: 1982; 535 – 538
dc.identifier.citedreferenceP. Scheltens, N. Fox, F. Barkhof, C. De Carli. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 1: 2002; 13 – 21
dc.identifier.citedreferenceD.E. Kuhl, R.Q. Edwards, A.R. Ricci, M. Reivich. Quantitative section scanning using orthogonal tangent correction. J Nucl Med. 14: 1973; 196 – 200
dc.identifier.citedreferenceM.M. Ter‐Pogossian. The origins of positron emission tomography. Semin Nucl Med. 22: 1992; 140 – 149
dc.identifier.citedreferenceR.S. Frackowiak, C. Pozzilli, N.J. Legg, G.H. Du Boulay, J. Marshall, G.L. Lenzi, et al. Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen‐15 and positron tomography. Brain. 104: 1981; 753 – 778
dc.identifier.citedreferenceN.L. Foster, T.N. Chase, L. Mansi, R. Brooks, P. Fedio, N.J. Patronas, et al. Cortical abnormalities in Alzheimer’s disease. Ann Neurol. 16: 1984; 649 – 654
dc.identifier.citedreferenceR.P. Friedland, T.F. Budinger, E. Ganz, Y. Yano, C.A. Mathis, B. Koss, et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose. J Comput Assist Tomogr. 7: 1983; 590 – 598
dc.identifier.citedreferenceI. McKeith, J. O’Brien, Z. Walker, K. Tatsch, J. Booij, J. Darcourt, et al. Sensitivity and specificity of dopamine transporter imaging with 123I‐FP‐CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 6: 2007; 305 – 313
dc.identifier.citedreferenceD.E. Kuhl, S. Minoshima, J.A. Fessler, K.A. Frey, N.L. Foster, E.P. Ficaro, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease and Parkinson’s disease. Ann Neurol. 40: 1996; 399 – 410
dc.identifier.citedreferenceD.E. Kuhl, R.A. Koeppe, S. Minoshima, S.E. Snyder, E.P. Ficaro, N.L. Foster, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology. 52: 1999; 691 – 699
dc.identifier.citedreferenceW.E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D.P. Holt, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Ann Neurol. 55: 2004; 306 – 319
dc.identifier.citedreferenceG.W. Small, V. Kepe, L.M. Ercoli, P. Siddarth, S.Y. Bookheimer, K.J. Miller, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 355: 2006; 2652 – 2663
dc.identifier.citedreferenceS. Minoshima, K.A. Frey, R.A. Koeppe, N.L. Foster, D.E. Kuhl. A diagnostic approach in Alzheimer’s disease using three‐dimensional stereotactic surface projections of fluorine‐18‐FDG PET. J Nucl Med. 36: 1995; 1238 – 1248
dc.identifier.citedreferenceK. Herholz, E. Salmon, D. Perani, J.C. Baron, V. Holtoff, L. Frolich, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 17: 2002; 302 – 316
dc.identifier.citedreferenceJ.H. Burdette, S. Minoshima, T. Vander Borght, D.D. Tran, D.E. Kuhl. Alzheimer disease: improved visual interpretation of PET images by using three‐dimensional stereotaxic surface projections. Radiology. 198: 1996; 837 – 843
dc.identifier.citedreferenceT.E. Nichols, A.P. Holmes. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 15: 2002; 1 – 25
dc.identifier.citedreferenceT. Nichols, S. Hayasaka. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res. 12: 2003; 419 – 446
dc.identifier.citedreferenceG.J. Kelloff, J.M. Hoffman, B. Johnson, H.I. Scher, B.A. Siegel, E. Cheng, et al. Progress and promise of FDG‐PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 11: 2005; 2785 – 2808
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.