Show simple item record

Cluster Observations on Timeâ ofâ Flight Effect of Oxygen Ions in Magnetotail Reconnection Exhaust Region

dc.contributor.authorWu, T.
dc.contributor.authorFu, S. Y.
dc.contributor.authorXie, L.
dc.contributor.authorZong, Q.‐g.
dc.contributor.authorZhou, X. Z.
dc.contributor.authorYue, C.
dc.contributor.authorSun, W. J.
dc.contributor.authorPu, Z. Y.
dc.contributor.authorXiong, Y.
dc.contributor.authorZhao, S. J.
dc.contributor.authorZhang, H.
dc.contributor.authorYu, F. B.
dc.date.accessioned2020-02-05T15:03:43Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-02-05T15:03:43Z
dc.date.issued2020-02-16
dc.identifier.citationWu, T.; Fu, S. Y.; Xie, L.; Zong, Q.‐g. ; Zhou, X. Z.; Yue, C.; Sun, W. J.; Pu, Z. Y.; Xiong, Y.; Zhao, S. J.; Zhang, H.; Yu, F. B. (2020). "Cluster Observations on Timeâ ofâ Flight Effect of Oxygen Ions in Magnetotail Reconnection Exhaust Region." Geophysical Research Letters 47(3): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/153535
dc.description.abstractThe Dâ shaped ion velocity distribution generated by the timeâ ofâ flight (ToF) effect can be considered as an important characteristic of reconnection exhausts in the magnetopause and magnetotail reconnection processes. In this study, we reported the Dâ shaped velocity distribution of O+ ions produced by the ToF effect in the magnetotail reconnection exhaust based on the observations from the Cluster spacecraft. The observed cutoff velocity of O+ ions is smaller than that of H+ ions at the same time, which is different from the previous theoretical prediction. We suggested that the difference between the two cutoff velocities is probably due to O+ ions having a larger reconnection diffusion region than H+ ions. We also demonstrated a remoteâ sensing method to estimate the spatial scale ratio between the O+ and H+ diffusion regions and the distance from the observation site to the center of the magnetotail reconnection region.Plain Language SummaryThe reconnection processes at the Earth’s magnetopause and magnetotail can convert the magnetic energy into the kinetic energy of the plasma, thus producing highâ speed reconnection exhausts. The exhausting ions usually show a Dâ shaped velocity distribution caused by the timeâ ofâ flight effect. Previous works usually focused only on exhausting protons from the reconnection site, while O+ ions could also be abundant during geomagnetic active times. In this study, we analyzed a reconnection event to investigate the behaviors of O+ and H+ ions in the magnetotail reconnection exhaust region using the observations from the Cluster spacecraft. It is suggested that different behaviors of H+ and O+ ions are probably due to O+ ions having a larger reconnection diffusion region than H+ ions. In addition, we proposed a remoteâ sensing method to estimate the spatial scale ratio between the O+ and H+ diffusion regions and the distance from the observation site to the center of the magnetotail reconnection region.Key PointsThe timeâ ofâ flight effect of O+ ions in magnetotail reconnection exhaust was observed by the Cluster spacecraftThe observed cutoff velocity of O+ is smaller than that of H+, indicating that O+ may have a larger diffusion region than H+A remoteâ sensing method to estimate the spatial scale ratio between O+ and H+ diffusion regions is introduced
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.othermagnetic reconnection
dc.subject.otherreconnection outflow
dc.subject.otheroxygen ions
dc.titleCluster Observations on Timeâ ofâ Flight Effect of Oxygen Ions in Magnetotail Reconnection Exhaust Region
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153535/1/grl60154.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153535/2/grl60154_am.pdf
dc.identifier.doi10.1029/2019GL085200
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceTenfjord, P., Hesse, M., Norgren, C., Spinnangr, S. F., & Kolstø, H. ( 2019 ). The impact of oxygen on the reconnection rate. Geophysical Research Letters, 46 ( 12 ), 6195 â 6203. https://doi.org/10.1029/2019GL082175
dc.identifier.citedreferenceLi, W. Y., Andre, M., Khotyaintsev, Y. V., Vaivads, A., Fuselier, S. A., et al. ( 2017 ). Cold ionospheric ions in the magnetic reconnection outflow region. Journal of Geophysical Researchâ Space Physics, 122 ( 10 ), 10,194 â 10,202. https://doi.org/10.1002/2017ja024287
dc.identifier.citedreferenceLiang, H., Ashourâ Abdalla, M., Lapenta, G., & Walker, R. J. ( 2016 ). Oxygen impacts on dipolarization fronts and reconnection rate, J. Geophys. Res. Space Physics, 121 ( 2 ), 1148 â 1166. https://doi.org/10.1002/2015JA021747
dc.identifier.citedreferenceLiang, H., Lapenta, G., Walker, R. J., Schriver, D., Elâ Alaoui, M., & Berchem, J. ( 2017 ). Oxygen acceleration in magnetotail reconnection, J. Geophys. Res. Space Physics, 122 ( 1 ), 618 â 639. https://doi.org/10.1002/2016JA023060
dc.identifier.citedreferenceLiu, Y. H., Kistler, L. M., Mouikis, C. G., Klecker, B., & Dandouras, I. ( 2013 ). Heavy ion effects on substorm loading and unloading in the Earth’s magnetotail. Journal of Geophysical Researchâ Space Physics, 118 ( 5 ), 2101 â 2112. https://doi.org/10.1002/jgra.50240
dc.identifier.citedreferenceLiu, Y. H., Kistler, L. M., Mouikis, C. G., Roytershteyn, V., & Karimabadi, H. ( 2014 ). The scale of the magnetotail reconnecting current sheet in the presence of O +. Geophys. Res. Lett., 41 ( 14 ), 4819 â 4827. https://doi.org/10.1002/2014GL060440
dc.identifier.citedreferenceLiu, Y. H., Mouikis, C. G., Kistler, L. M., Wang, S., Roytershteyn, V., & Karimabadi, H. ( 2015 ). The heavy ion diffusion region in magnetic reconnection in the Earth’s magnetotail. J. Geophys. Res. Space Physics, 120, 3535 â 3551. https://doi.org/10.1002/2015JA020982
dc.identifier.citedreferenceMarkidis, S., Lapenta, G., Bettarini, L., Goldman, M., Newman, D., & Andersson, L. ( 2011 ). Kinetic simulations of magnetic reconnection in presence of a background O + population. J. Geophys. Res., 116 ( A1 ), A00K16. https://doi.org/10.1029/2011JA016429
dc.identifier.citedreferenceMouikis, C. G., Kistler, L. M., Liu, Y. H., Klecker, B., Korth, A., & Dandouras, I. ( 2010 ). H + and O + content of the plasma sheet at 15â 19 Re as a function of geomagnetic and solar activity. J. Geophys. Res., 115 ( A12 ), A00J16. https://doi.org/10.1029/2010JA015978
dc.identifier.citedreferencePetrinec, S. M., Burch, J. L., Fuselier, S. A., Gomez, R. G., & Lewis, et al. ( 2016 ). Comparison of magnetospheric multiscale ion jet signatures with predicted reconnection site locations at the magnetopause. Geophysical Research Letters, 43 ( 12 ), 5997 â 6004. https://doi.org/10.1002/2016gl069626
dc.identifier.citedreferencePhan, T. D., Sonnerup, B. U., & Lin, R. P. ( 2001 ). Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations. J. Geophys. Res., 106 ( A11 ), 25,489 â 25,501. https://doi.org/10.1029/2001JA900054
dc.identifier.citedreferenceRème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., Coeurâ Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassanoâ Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J. B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., & Sonnerup, B. ( 2001 ). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys., 19 ( 10/12 ), 1303 â 1354. https://doi.org/10.5194/angeoâ 19â 1303â 2001
dc.identifier.citedreferenceRuan, P., Fu, S. Y., Zong, Q.â G., Pu, Z. Y., Cao, X., Liu, W. L., Zhou, X. Z., & Daly, P. W. ( 2005 ). Ion composition variations in the plasma sheet observed by Cluster/RAPID. Geophys. Res. Lett., 32 ( 1 ), L01105. https://doi.org/10.1029/2004GL021266
dc.identifier.citedreferenceShay, M. A., Drake, J. F., Denton, R. E., & Biskamp, D. ( 1998 ). Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res., 103 ( A5 ), 9165 â 9176. https://doi.org/10.1029/97JA03528
dc.identifier.citedreferenceShay, M. A., & Swisdak, M. ( 2004 ). Threeâ species collisionless reconnection: Effect of O + on magnetotail reconnection. Phys Rev Lett, 93 ( 17 ), 175001. https://doi.org/10.1103/PhysRevLett.93.175001
dc.identifier.citedreferenceSonnerup, B. U. Ã . ( 1979 ). Magnetic field reconnection. In E. N. Parker, C. F. Kennel, & L. J. Lanzerotti (Eds.), solar system plasma physics, vol. III (pp. 45 â 108 ). New York: Elsevier.
dc.identifier.citedreferenceTenfjord, P., Hesse, M., & Norgren, C. ( 2018 ). The formation of an oxygen wave by magnetic reconnection. Journal of Geophysical Research: Space Physics, 123 ( 11 ), 9370 â 9380. https://doi.org/10.1029/2018JA026026
dc.identifier.citedreferenceTrattner, K. J., Mulcock, J. S., Petrinec, S. M., & Fuselier, S. A. ( 2007 ). Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys. Res. Lett., 34 ( 3 ), L03108. https://doi.org/10.1029/2006GL028397
dc.identifier.citedreferenceVasyliunas, V. M. ( 1975 ). Theoretical models of magnetic field line merging. Rev. Geophys., 13 ( 1 ), 303 â 336. https://doi.org/10.1029/RG013i001p00303
dc.identifier.citedreferenceVines, S. K., Fuselier, S. A., Trattner, K. J., Burch, J. L., & Allen, et al. ( 2017 ). Magnetospheric ion evolution across the lowâ latitude boundary layer separatrix. Journal of Geophysical Researchâ Space Physics, 122 ( 10 ), 10,247 â 10,262. https://doi.org/10.1002/2017ja024061
dc.identifier.citedreferenceWang, S., Kistler, L. M., Mouikis, C. G., Liu, Y., & Genestreti, K. J. ( 2015 ). Hot magnetospheric O + and cold ion behavior in magnetopause reconnection: Cluster observations. J. Geophys. Res. Space Physics, 119, 9601 â 9623. https://doi.org/10.1002/2014JA020402
dc.identifier.citedreferenceWilken, B., Zong, Q. G., Daglis, I. A., Doke, T., Livi, S., Maezawa, K., Pu, Z. Y., Ullaland, S., & Yamamoto, T. ( 1995 ). Tailward flowing energetic oxygen ion bursts associated with multiple flux ropes in the distant magnetotail: GEOTAIL observations. Geophys. Res. Lett., 22 ( 23 ), 3267 â 3270. https://doi.org/10.1029/95GL02980
dc.identifier.citedreferenceWu, T., Fu, S. Y., Zong, Q. G., Sun, W. J., Cui, Y. B., Zhao, D., Guo, R. L., Zhao, S. J., & Wang, Y. F. ( 2016 ). Thin energetic O + layer embedded in the magnetotail reconnection current sheet observed by Cluster. Geophys. Res. Lett., 43 ( 22 ), 11,493 â 11,500. https://doi.org/10.1002/2016GL071184
dc.identifier.citedreferenceXiao, C. J., Pu, Z. Y., Wang, X. G., Ma, Z. W., Fu, S. Y., Phan, T. D., Zong, Q. G., Liu, Z. X., Dunlop, M. W., Glassmeier, K. H., Balogh, A., Reme, H., Dandouras, I., & Escoubet, C. P. ( 2007 ). A Cluster measurement of fast magnetic reconnection in the magnetotail. Geophysical Research Letters, 34 ( 1 ), L01101. https://doi.org/10.1029/2006gl028006
dc.identifier.citedreferenceYue, C., Bortnik, J., Li, W., Ma, Q., Gkioulidou, M., Reeves, G. D., Wang, C. P., Thorne, R. M., Lui, A. T. Y., Gerrard, A. J., Spence, H. E., & Mitchell, D. G. ( 2018 ). The composition of plasma inside geostationary orbit based on Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 123 ( 8 ), 6478 â 6493. https://doi.org/10.1029/2018JA025344
dc.identifier.citedreferenceYue, C., Bortnik, J., Li, W., Ma, Q., Wang, C.â P., Thorne, R. M., Lyons, L., Reeves, G. D., Spence, H. E., Gerrard, A. J., Gkioulidou, M., & Mitchell, D. G. ( 2019 ). Oxygen ion dynamics in the Earth’s ring current: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 124 ( 10 ), 7786 â 7798. https://doi.org/10.1029/2019JA026801
dc.identifier.citedreferenceZhao, S. J., Fu, S. Y., Sun, W. J., Parks, G. K., Zhou, X. Z., Pu, Z. Y., Zhao, D., Wu, T., Yu, F. B., & Zong, Q. G. ( 2018 ). Oxygen ion reflection at earthward propagating dipolarization fronts in the magnetotail. Journal of Geophysical Research: Space Physics, 123 ( 8 ), 6277 â 6288. https://doi.org/10.1029/2018JA025689
dc.identifier.citedreferenceZong, Q.â G., Wilken, B., Reeves, G. D., Daglis, I. A., Doke, T., Iyemori, T., Livi, S., Maezawa, K., Mukai, T., Kokubun, S., Pu, Z. Y., Ullaland, S., Woch, J., Lepping, R., & Yamamoto, T. ( 1997 ). Geotail observations of energetic ion species and magnetic field in plasmoidâ like structures in the course of an isolated substorm event. J. Geophys. Res., 102 ( A6 ), 11,409 â 11,428. https://doi.org/10.1029/97JA00076
dc.identifier.citedreferenceZong, Q.â G., Zhang, H., Fu, S. Y., Wang, Y. F., Pu, Z. Y., Korth, A., Daly, P. W., & Fritz, T. A. ( 2008 ). Ionospheric oxygen ions dominant bursty bulk flows: Cluster and Double Star observations. J. Geophys. Res., 113 ( A7 ), A07S23. https://doi.org/10.1029/2007JA012764
dc.identifier.citedreferenceZong, Q. G., et al. ( 2004 ). Cluster observations of earthward flowing plasmoid in the tail. Geophysical Research Letters, 31 ( 18 ), L18803. https://doi.org/10.1029/2004gl020692
dc.identifier.citedreferenceBalogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K. H., Georgescu, E., Glassmeier, K. H., Harris, J., Musmann, G., Oddy, T., & Schwingenschuh, K. ( 2001 ). The cluster magnetic field investigation: Overview of inâ flight performance and initial results. Ann. Geophys., 19 ( 10/12 ), 1207 â 1217. https://doi.org/10.5194/angeoâ 19â 1207â 2001
dc.identifier.citedreferenceBroll, J. M., Fuselier, S. A., & Trattner, K. J. ( 2017 ). Locating dayside magnetopause reconnection with exhaust ion distributions. J. Geophys. Res. Space Physics, 122 ( 5 ), 5105 â 5113. https://doi.org/10.1002/2016JA023590
dc.identifier.citedreferenceEastman, T. E., Frank, L. A., Peterson, W. K., & Lennartsson, W. ( 1984 ). The plasma sheet boundary layer. J. Geophys. Res., 89 ( A3 ), 1553 â 1572. https://doi.org/10.1029/JA089iA03p01553
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Ã ieroset, M., & Shay, M. A. ( 2010 ). Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001â 2005 Cluster observations and comparison with simulations. J. Geophys. Res., 115 ( A8 ), A08215. https://doi.org/10.1029/2009JA014962
dc.identifier.citedreferenceEcher, E., Korth, A., Zong, Q.â G., Fraünz, M., Gonzalez, W. D., Guarnieri, F. L., Fu, S. Y., & Reme, H. ( 2008 ). Cluster observations of O + escape in the magnetotail due to shock compression effects during the initial phase of the magnetic storm on 17 August 2001. J. Geophys. Res., 113 ( A5 ), A05209. https://doi.org/10.1029/2007JA012624
dc.identifier.citedreferenceFuselier, S. A., Burch, J. L., Mukherjee, J., Genestreti, K. J., Vines, S. K., Gomez, R., Goldstein, J., Trattner, K. J., Petrinec, S. M., Lavraud, B., & Strangeway, R. J. ( 2017 ). Magnetospheric ion influence at the dayside magnetopause. Journal of Geophysical Researchâ Space Physics, 122 ( 8 ), 8617 â 8631. https://doi.org/10.1002/2017ja024515
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., Petrinec, S. M., Denton, M. H., Toledoâ Redondo, S., Andre, M., et al. ( 2019 ). Mass loading the Earth’s dayside magnetopause boundary layer and its effect on magnetic reconnection. Geophysical Research Letters, 46 ( 12 ), 6204 â 6213. https://doi.org/10.1029/2019gl082384
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., Petrinec, S. M., Owen, C. J., & Rème, H. ( 2005 ). Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J. Geophys. Res., 110 ( A6 ), A06212. https://doi.org/10.1029/2004JA010805
dc.identifier.citedreferenceJohnstone, A. D., Alsop, C., Burge, S., et al. ( 1997 ). Space Science Reviews, 79 ( 1/2 ), 351 â 398. https://doi.org/10.1023/A:1004938001388
dc.identifier.citedreferenceKarimabadi, H., Roytershteyn, V., Mouikis, C. G., Kistler, L. M., & Daughton, W. ( 2011 ). Flushing effect in reconnection: Effects of minority species of oxygen ions. Planetary and Space Science, 59 ( 7 ), 526 â 536. https://doi.org/10.1016/j.pss.2010.07.014
dc.identifier.citedreferenceKistler, L. M., Mouikis, C. G., Cao, X., Frey, H., Klecker, B., Dandouras, I., Korth, A., Marcucci, M. F., Lundin, R., McCarthy, M., Friedel, R., & Lucek, E. ( 2006 ). Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the nearâ Earth neutral line. J. Geophys. Res., 111 ( A11 ), A11222. https://doi.org/10.1029/2006JA011939
dc.identifier.citedreferenceKistler, L. M., et al. ( 2005 ). Contribution of nonadiabatic ions to the crossâ tail current in an O + dominated thin current sheet. J. Geophys. Res., 110 ( A6 ), A06213. https://doi.org/10.1029/2004JA010653
dc.identifier.citedreferenceKronberg, E. A., Ashourâ Abdalla, M., Dandouras, I., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R., Malova, H. V., Orlova, K. G., Peroomian, V., Shklyar, D. R., Shprits, Y. Y., Welling, D. T., & Zelenyi, L. M. ( 2014 ). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci Rev, 184 ( 1â 4 ), 173 â 235. https://doi.org/10.1007/s11214â 014â 0104â 0
dc.identifier.citedreferenceLennartsson, W., & Shelley, E. G. ( 1986 ). Survey of 0.1â to 16â keV/e plasma sheet ion composition. J. Geophys. Res., 91 ( A3 ), 3061 â 3076. https://doi.org/10.1029/JA091iA03p03061
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.