Show simple item record

The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko)

dc.contributor.authorLaver, Rebecca J.
dc.contributor.authorMorales, Cristian H.
dc.contributor.authorHeinicke, Matthew P.
dc.contributor.authorGamble, Tony
dc.contributor.authorLongoria, Kristin
dc.contributor.authorBauer, Aaron M.
dc.contributor.authorDaza, Juan D.
dc.date.accessioned2020-02-05T15:04:17Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-02-05T15:04:17Z
dc.date.issued2020-02
dc.identifier.citationLaver, Rebecca J.; Morales, Cristian H.; Heinicke, Matthew P.; Gamble, Tony; Longoria, Kristin; Bauer, Aaron M.; Daza, Juan D. (2020). "The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko)." Journal of Morphology 281(2): 213-228.
dc.identifier.issn0362-2525
dc.identifier.issn1097-4687
dc.identifier.urihttps://hdl.handle.net/2027.42/153558
dc.description.abstractArmored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap‐footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best‐studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well‐known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X‐rays and high‐resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.Distribution of osteoderms in the skull of a large sized Tokay gecko (Gekko gecko).
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercomparative anatomy
dc.subject.otherosteoderms
dc.subject.otherendolymphatic sac
dc.subject.otherCT scans
dc.subject.otherreptiles
dc.subject.otherosteology
dc.titleThe development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153558/1/jmor21092_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153558/2/jmor21092.pdf
dc.identifier.doi10.1002/jmor.21092
dc.identifier.sourceJournal of Morphology
dc.identifier.citedreferencePetzold, H.‐G. ( 2007 ). Lives of captive reptiles—Translation of “Aufgaben und Probleme bei der Erforshung der Lebensäusserungen der Niederen Amnioten (Reptilien)” [Tasks and Problems Encountered by Zoo Keepers in Research Concerning the Vital Manifestations of the Lower Amniotic Animals (Reptiles)] (Translated by L. Heichler and J.B. Murphy) (Vol. 22 ). Ithaca, NY: Society for the Study of Amphibians and Reptiles (SSAR).
dc.identifier.citedreferenceRead, R. ( 1986 ). Osteoderms in the Lacertilia: An investigation into the structure and phylogenetic implications of dermal bone found under the skin of lizards (PhD thesis), California State University, Fullerton, CA.
dc.identifier.citedreferenceRomer, A. S. ( 1956 ). Osteology of the reptiles. Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceRösler, H., Bauer, A. M., Heinicke, M. P., Greenbaum, E., Jackman, T., Nguyen, T. Q., & Ziegler, T. ( 2011 ). Phylogeny, taxonomy, and zoogeography of the genus Gekko Laurenti, 1768 with the revalidation of G. reevesii Gray, 1831 (Sauria: Gekkonidae). Zootaxa, 2989 ( 1 ), 1 – 50. https://doi.org/10.11646/zootaxa.2989.1.1
dc.identifier.citedreferenceRussell, A. P., & Bauer, A. M. ( 1987 ). Le gecko géant Hoplodactylus delcourti et ses relations avec le gigantisme et l’endemisme insulaire chez les Gekkonidae. Mésogée, 46, 25 – 28.
dc.identifier.citedreferenceRussell, A. P., Vickaryous, M. K., & Bauer, A. M. ( 2016 ). The phylogenetic distribution, anatomy and histology of the post‐cloacal bones and adnexa of geckos. Journal of Morphology, 277 ( 2 ), 264 – 277. https://doi.org/10.1002/jmor.20494
dc.identifier.citedreferenceScherz, M. D., Daza, J. D., Köhler, J., Vences, M., & Glaw, F. ( 2017 ). Off the scale: A new species of fish‐scale gecko (Squamata: Gekkonidae: Geckolepis ) with exceptionally large scales. PeerJ, 5, e2955. https://doi.org/10.7717/peerj.2955
dc.identifier.citedreferenceSchmidt, W. J. ( 1911 ). Beobactungen an der Haut von Geckolepis und einigen anderen Geckoniden. In A. Voeltzkow (Ed.), Reise in Ostafrika in den Jahren 1903–1905 mit Mitteln der Hermann und Elise geb. Hickman Wentzel‐Stiftung ausgeführt Wissenschaftliche Ergebniss von Alfred Voeltzkkow (Vol. 4, pp. 331 – 352 ). Stuttgart, BW: Schweizerbart’sche Verlagsbuchhandlung.
dc.identifier.citedreferenceSchmidt, W. J. ( 1912 ). Studien am Integument der Reptilien. I. Die Haut der Geckoniden. Zeitschrift für Wissenschaftliche Zoologie, 51, 139 – 258.
dc.identifier.citedreferenceSchucht, P. J., Rühr, P. T., Geier, B., Glaw, F., & Lambertz, M. ( 2019 ). Armored with skin and bone: The integumentary morphology of the Antsingy leaf chameleon Brookesia perarmata (Iguania: Chamaeleonidae). Journal of Morphology, 280 ( S1 ), S214 – S244. https://doi.org/10.1002/jmor.21003
dc.identifier.citedreferenceSeidel, M. R. ( 1979 ). The osteoderms of the American alligator and their functional significance. Herpetologica, 35 ( 4 ), 375 – 380.
dc.identifier.citedreferenceSeufer, H. ( 1991 ). Keeping and breeding geckos. Neptune, NJ: TFH Publications.
dc.identifier.citedreferenceSiebenrock, F. ( 1893 ). Das Skelet von Brookesia superciliaris Kuhl. Sitzungsberichte der Mathematisch‐Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, 102, 71 – 118.
dc.identifier.citedreferenceSiebenrock, F. ( 1894 ). Das Skelet der Lacerta simonyi Steind. und der Lacertiden familie überhaupt. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.‐naturw, Klasse Abt. 1, 103, 205 – 292.
dc.identifier.citedreferenceSimoes, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., … Nydam, R. L. ( 2018 ). The origin of squamates revealed by a middle Triassic lizard from the Italian Alps. Nature, 557 ( 7707 ), 706 – 709. https://doi.org/10.1038/s41586-018-0093-3
dc.identifier.citedreferenceStanley, E. L. ( 2013 ). Systematics and morphological diversification of the Cordylidae (Squamata) (PhD Doctoral dissertation), American Museum of Natural History, New York, NY. Retrieved from http://digitallibrary.amnh.org/handle/2246/6713
dc.identifier.citedreferenceStanley, E. L., Paluh, D. J., & Blackburn, D. C. ( 2019 ). Diversification of dermal armor in squamates. Journal of Morphology, 280 ( S1 ), S224 – S244. https://doi.org/10.1002/jmor.21003
dc.identifier.citedreferenceSuchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. ( 2018 ). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4 ( 1 ), vey016. https://doi.org/10.1093/ve/vey016
dc.identifier.citedreferenceSun, C.‐Y., & Chen, P.‐Y. ( 2013 ). Structural design and mechanical behavior of alligator ( Alligator mississippiensis ) osteoderms. Acta Biomaterialia, 9 ( 11 ), 9049 – 9064. https://doi.org/10.1016/j.actbio.2013.07.016
dc.identifier.citedreferenceSymonds, M. R. E., & Blomberg, S. P. ( 2014 ). A primer on phylogenetic generalised least squares. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 105 – 130 ). Berlin, Heidelberg: Springer‐Verlag.
dc.identifier.citedreferenceUetz, P., Freed, P., & Hošek, J. ( 2019 ). The Reptile Database. Retreived from http://www.reptile-database.org
dc.identifier.citedreferenceVickaryous, M. K., & Hall, B. K. ( 2006 ). Osteoderm morphology and development in the nine‐banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). Journal of Morphology, 267 ( 11 ), 1273 – 1283. https://doi.org/10.1002/jmor.10475
dc.identifier.citedreferenceVickaryous, M. K., Meldrum, G., & Russell, A. P. ( 2015 ). Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function. Journal of Morphology, 276 ( 11 ), 1345 – 1357. https://doi.org/10.1002/jmor.20422
dc.identifier.citedreferenceVickaryous, M. K., & Sire, J. Y. ( 2009 ). The integumentary skeleton of tetrapods: Origin, evolution, and development. Journal of Anatomy, 214 ( 4 ), 441 – 464. https://doi.org/10.1111/j.1469-7580.2008.01043.x
dc.identifier.citedreferenceVilla, A., Daza, J. D., Bauer, A. M., & Delfino, M. ( 2018 ). Comparative cranial osteology of European gekkotans (Reptilia, Squamata). Zoological Journal of the Linnean Society, 184 ( 3 ), 857 – 895. https://doi.org/10.1093/zoolinnean/zlx104
dc.identifier.citedreferencevon Koenigswald, W., & Storch, G. ( 1983 ). Pholidocercus hassiacus, ein Amphilemuride aus dem Eözan der "Grube Messel" bei Darmstadt (Mammalia, Lipotyphla). Senckenbergiana Lethaea, 64, 447 – 495.
dc.identifier.citedreferenceWhiteside, B. ( 1922 ). The development of the saccus endolymphaticus in Rana temporaria Linné. The American Journal of Anatomy, 30 ( 2 ), 231 – 266. https://doi.org/10.1002/aja.1000300204
dc.identifier.citedreferenceWood, P. L. J., Guo, X., Travers, S. L., Su, Y.‐C., Olson, K. V., Bauer, A. M., … Brown, R. M. ( 2019 ). Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements. bioRxiv, 717520. https://doi.org/10.1101/717520
dc.identifier.citedreferenceZylberberg, L., & Castanet, J. ( 1985 ). New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata). Journal of Morphology, 186 ( 3 ), 327 – 342. https://doi.org/10.1002/jmor.1051860309
dc.identifier.citedreferenceBroeckhoven, C., du Plessis, A., Minne, B., & Van Damme, R. ( 2019 ). Evolutionary morphology of osteoderms in squamates. Journal of Morphology, 280 ( S1 ), S90 – S244. https://doi.org/10.1002/jmor.21003
dc.identifier.citedreferenceBroeckhoven, C., El Adak, Y., Hui, C., Van Damme, R., & Stankowich, T. ( 2018 ). On dangerous ground: The evolution of body armour in cordyline lizards. Proceedings of the Royal Society B: Biological Sciences, 285 ( 1880 ), 20180513. https://doi.org/10.1098/rspb.2018.0513
dc.identifier.citedreferenceBroeckhoven, C., Mouton, P. l. F. N., & Hui, C. ( 2018 ). Proximate causes of variation in dermal armour: Insights from armadillo lizards. Oikos, 127 ( 10 ), 1449 – 1458. https://doi.org/10.1111/oik.05401
dc.identifier.citedreferenceAngel, F. ( 1942 ). Les lézards de Madagascar. Memoires De L’academie Malgache, 36, 1 – 193.
dc.identifier.citedreferenceArnold, E. N. ( 1989 ). Towards a phylogeny and biogeography of the Lacertidae: Relationships within an Old World family of lizards derived from morphology. Bulletin of the British Museum of Natural History, 55, 209 – 257.
dc.identifier.citedreferenceAuffenberg, W. ( 1981 ). The behavioral ecology of the komodo monitor. Gainesville, FL: University Press.
dc.identifier.citedreferenceAvallone, B., Tizzano, M., Cerciello, R., Buglione, M., & Fulgione, D. ( 2018 ). Gross anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin. Tissue and Cell, 51, 62 – 67. https://doi.org/10.1016/j.tice.2018.03.002
dc.identifier.citedreferenceBabu, M. Q., Shihan, T. R., Debbarma, R., & Debbarma, P. ( 2018 ). Chrysopelea ornata (Ornate flying snake) diet. Herpetological Review, 49 ( 3 ), 544 – 545.
dc.identifier.citedreferenceBarahona, F., & Barbadillo, L. J. ( 1998 ). Inter‐and intraspecific variation in the post‐natal skull of some lacertid lizards. Journal of Zoology, 245 ( 4 ), 393 – 405. https://doi.org/10.1111/j.1469-7998.1998.tb00114.x
dc.identifier.citedreferenceBatista, A., Hertz, A., Mebert, K., Koehler, G., Lotzkat, S., Ponce, M., & Vesely, M. ( 2014 ). Two new fringe‐limbed frogs of the genus Ecnomiohyla (Anura: Hylidae) from Panama. Zootaxa, 3826 ( 3 ), 449 – 474. https://doi.org/10.11646/zootaxa.3826.3.2
dc.identifier.citedreferenceBauer, A. M. ( 1989 ). Extracranial endolymphatic sacs in Eurydactylodes (Reptilia: Gekkonidae), with comments on endolymphatic function in lizards. Journal of Herpetology, 23 ( 2 ), 172 – 175. https://doi.org/10.2307/1564025
dc.identifier.citedreferenceBauer, A. M. ( 2013 ). Geckos: The animal answer guide. Baltimore, MD: The Johns Hopkins University Press.
dc.identifier.citedreferenceBauer, A. M., & Russell, A. P. ( 1989 ). Supraorbital ossifications in geckos (Reptilia: Gekkonidae). Canadian Journal of Zoology, 67 ( 3 ), 678 – 684. https://doi.org/10.1139/z89-098
dc.identifier.citedreferenceBellairs, d. A., & Kamal, A. M. ( 1981 ). The Chondrocranium and the development of the skull in recent reptiles. In C. Gans (Ed.), Biology of the Reptilia (Vol. 11, pp. 1 – 263 ). London, England: Academic Press.
dc.identifier.citedreferenceBever, G. S., Bell, C. J., & Maisano, J. A. ( 2005 ). The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae). Palaeontologia Electronica, 8 ( 1 ), 1 – 36.
dc.identifier.citedreferenceBhullar, B.‐A. S., & Bell, C. J. ( 2008 ). Osteoderms of the California legless lizard Anniella (Squamata: Anguidae) and their relevance for considerations of miniaturization. Copeia, 2008 ( 4 ), 785 – 793. https://doi.org/10.1643/CG-07-189
dc.identifier.citedreferenceBroeckhoven, C., Diedericks, G., & Mouton, P. l. F. N. ( 2015 ). What doesn’t kill you might make you stronger: Functional basis for variation in body armour. Journal of Animal Ecology, 84 ( 5 ), 1213 – 1221. https://doi.org/10.1111/1365-2656.12414
dc.identifier.citedreferenceBroeckhoven, C., du Plessis, A., & Hui, C. ( 2017 ). Functional trade‐off between strength and thermal capacity of dermal armor: Insights from girdled lizards. Journal of the Mechanical Behavior of Biomedical Materials, 74, 189 – 194. https://doi.org/10.1016/j.jmbbm.2017.06.007
dc.identifier.citedreferenceRuibal, R., & Shoemaker, V. ( 1984 ). Osteoderms in anurans. Journal of Herpetology, 18, 313 – 328. https://doi.org/10.2307/1564085
dc.identifier.citedreferenceBuchwitz, M., & Voigt, S. ( 2010 ). Peculiar carapace structure of a Triassic chroniosuchian implies evolutionary shift in trunk flexibility. Journal of Vertebrate Paleontology, 30 ( 6 ), 1697 – 1708. https://doi.org/10.1080/02724634.2010.521685
dc.identifier.citedreferenceBuchwitz, M., Witzmann, F., Voigt, S., & Golubev, V. ( 2012 ). Osteoderm microstructure indicates the presence of a crocodylian‐like trunk bracing system in a group of armoured basal tetrapods. Acta Zoologica, 93 ( 3 ), 260 – 280. https://doi.org/10.1111/j.1463-6395.2011.00502.x
dc.identifier.citedreferenceBucol, A., & Alcala, A. ( 2013 ). Tokay gecko, Gekko gecko (Sauria: Gekkonidae) predation on juvenile house rats. Herpetology Notes, 6, 307 – 308.
dc.identifier.citedreferenceBurbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., … Zaher, H. ( 2019 ). Interrogating genomic‐scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, syz062. https://doi.org/10.1093/sysbio/syz062
dc.identifier.citedreferenceCamp, C. L. ( 1923 ). Classification of the lizards. Bulletin of the American Museum of Natural History, 48, 289 – 482.
dc.identifier.citedreferenceCampos, L. A., Da Silva, H. R., & Sebben, A. ( 2010 ). Morphology and development of additional bony elements in the genus Brachycephalus (Anura: Brachycephalidae). Biological Journal of the Linnean Society, 99 ( 4 ), 752 – 767. https://doi.org/10.1111/j.1095-8312.2010.01375.x
dc.identifier.citedreferenceCarranza, S., Arnold, E. N., Mateo, J. A., & Geniez, P. ( 2002 ). Relationships and evolution of the north African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 23 ( 2 ), 244 – 256. https://doi.org/10.1016/S1055-7903(02)00024-6
dc.identifier.citedreferenceCarranza, S., Arnold, E. N., Mateo, J. A., & López‐Jurado, L. F. ( 2000 ). Long‐distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proceedings of the Royal Society of London B: Biological Sciences, 267 ( 1444 ), 637 – 649. https://doi.org/10.1098/rspb.2000.1050
dc.identifier.citedreferenceChen, I. H., Kiang, J. H., Correa, V., Lopez, M. I., Chen, P.‐Y., McKittrick, J., & Meyers, M. A. ( 2011 ). Armadillo armor: Mechanical testing and micro‐structural evaluation. Journal of the Mechanical Behavior of Biomedical Materials, 4 ( 5 ), 713 – 722. https://doi.org/10.1016/j.jmbbm.2010.12.013
dc.identifier.citedreferenceChen, I. H., Yang, W., & Meyers, M. A. ( 2015 ). Leatherback Sea turtle shell: A tough and flexible biological design. Acta Biomaterialia, 28, 2 – 12. https://doi.org/10.1016/j.actbio.2015.09.023
dc.identifier.citedreferenceConrad, J. L. ( 2008 ). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1 – 182. https://doi.org/10.1206/310.1
dc.identifier.citedreferenceConrad, J. L., & Daza, J. D. ( 2015 ). Naming and rediagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal of Vertebrate Paleontology, 35 ( 5 ), e980891. https://doi.org/10.1080/02724634.2015.980891
dc.identifier.citedreferenceConrad, J. L., Head, J. J., & Carrano, M. T. ( 2014 ). Unusual soft‐tissue preservation of a crocodile lizard (Squamata, Shinisauria) from the Green River formation (Eocene) and shinisaur relationships. The Anatomical Record, 297 ( 3 ), 545 – 559. https://doi.org/10.1002/ar.22868
dc.identifier.citedreferenceCostantini, D., Alonso, M. L., Moazen, M., & Bruner, E. ( 2010 ). The relationship between cephalic scales and bones in lizards: A preliminary microtomographic survey on three lacertid species. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 293 ( 2 ), 183 – 194. https://doi.org/10.1002/ar.21048
dc.identifier.citedreferenceCurry Rogers, K., D’emic, M., Rogers, R., Vickaryous, M., & Cagan, A. ( 2011 ). Sauropod dinosaur osteoderms from the late cretaceous of Madagascar. Nature Communications, 2, 564. https://doi.org/10.1038/ncomms1578
dc.identifier.citedreferenceDacke, C. G., Elsey, R. M., Trosclair, P. L., III, Sugiyama, T., Nevarez, J. G., & Schweitzer, M. H. ( 2015 ). Alligator osteoderms as a source of labile calcium for eggshell formation. Journal of Zoology, 297 ( 4 ), 255 – 264. https://doi.org/10.1111/jzo.12272
dc.identifier.citedreferenceDaza, J. D., Herrera, A., Thomas, R., & Claudio, H. J. ( 2009 ). Are you what you eat? A geometric morphometric analysis of gekkotan skull shape. Biological Journal of the Linnean Society, 97 ( 3 ), 677 – 707. https://doi.org/10.1111/j.1095-8312.2009.01242.x
dc.identifier.citedreferenceDaza, J. D., Mapps, A. A., Lewis, P. J., Thies, M. L., & Bauer, A. M. ( 2015 ). Peramorphic traits in the Tokay gecko skull. Journal of Morphology, 276 ( 8 ), 915 – 928. https://doi.org/10.1002/jmor.20389
dc.identifier.citedreferencede Queiroz, K. ( 1987 ). Phylogenetic systematics of iguanine lizards: A comparative osteological study (p. 118 ). Berkeley, CA: University of California Press.
dc.identifier.citedreferenceDilkes, D., & Brown, L. E. ( 2007 ). Biomechanics of the vertebrae and associated osteoderms of the early Permian amphibian Cacops aspidephorus. Journal of Zoology, 271 ( 4 ), 396 – 407. https://doi.org/10.1111/j.1469-7998.2006.00221.x
dc.identifier.citedreferenceErickson, G. M., De Ricqles, A., De Buffrénil, V., Molnar, R. E., & Bayless, M. K. ( 2003 ). Vermiform bones and the evolution of gigantism in Megalania —How a reptilian fox became a lion. Journal of Vertebrate Paleontology, 23 ( 4 ), 966 – 970. https://doi.org/10.1671/23
dc.identifier.citedreferenceEstes, R., de Queiroz, K., & Gauthier, J. A. ( 1988 ). Phylogenetic relationships within Squamata. In Phylogenetic relationships of the lizard families (pp. 119 – 281 ). Standford, CA: Stanford University Press.
dc.identifier.citedreferenceEvans, S. E. ( 2008 ). The skull of lizards and tuatara. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the Reptilia, the skull of Lepidosauria (Vol. 20, pp. 1 – 347 ). Ithaca, NY: The Society for the Study of Amphibians and Reptiles (SSAR).
dc.identifier.citedreferenceFarlow, J. O., Hayashi, S., & Tattersall, G. J. ( 2010 ). Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora). Swiss Journal of Geosciences, 103 ( 2 ), 173 – 185. https://doi.org/10.1007/s00015-010-0021-5
dc.identifier.citedreferenceFarlow, J. O., Thompson, C. V., & Rosner, D. E. ( 1976 ). Plates of the dinosaur Stegosaurus: Forced convection heat loss fins? Science, 192 ( 4244 ), 1123 – 1125. https://doi.org/10.1126/science.192.4244.1123
dc.identifier.citedreferenceFitch, H. S. ( 1981 ). Sexual size differences in reptiles. Miscellaneous publication ‐ University of Kansas, Museum of Natural History, 70, 1–72.
dc.identifier.citedreferenceFrey, E. ( 1988 ). The carrying system of crocodilians—A biomechanical and phylogenetical analysis. Stuttgarter Beitrage zur Naturkunde Serie A (Biologie), 426, 1 – 60.
dc.identifier.citedreferenceGadow, H. ( 1901 ). Cambridge natural history: Amphibia and Reptiles (Vol. VIII ). New York, NY: Hafner Publishing Company.
dc.identifier.citedreferenceGao, K., & Norell, M. A. ( 2000 ). Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi Desert. Bulletin of the American Museum of Natural History, 2000 ( 249 ), 1 – 118. https://doi.org/10.1206/0003-0090(2000)249<0001:TCASOL>2.0.CO;2
dc.identifier.citedreferenceGood, D. A., & Schwenk, K. ( 1985 ). A new species of Abronia (Lacertilia: Anguidae) from Oaxaca, Mexico. Copeia, 1985 ( 1 ), 135 – 141. https://doi.org/10.2307/1444801
dc.identifier.citedreferenceGrafen, A. ( 1989 ). The phylogenetic regression. Philosophical Transactions of the Royal Society of London. B: Biological Sciences, 326 ( 1233 ), 119 – 157. https://doi.org/10.1098/rstb.1989.0106
dc.identifier.citedreferenceGriffing, A. H., Daza, J. D., DeBoer, J. C., & Bauer, A. M. ( 2018 ). Developmental osteology of the parafrontal bones of the sphaerodactylidae. The Anatomical Record, 301 ( 4 ), 581 – 606. https://doi.org/10.1002/ar.23749
dc.identifier.citedreferenceHarmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. ( 2008 ). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24 ( 1 ), 129 – 131. https://doi.org/10.1093/bioinformatics/btm538
dc.identifier.citedreferenceHenkel, F.‐W., & Schmidt, J. ( 1995 ). Geckoes: Biology, husbandry and reproduction. Malabar, FL: Krieger Publishing Company.
dc.identifier.citedreferenceHill, R. V. ( 2005 ). Integration of morphological data sets for phylogenetic analysis of Amniota: The importance of integumentary characters and increased taxonomic sampling. Systematic Biology, 54 ( 4 ), 530 – 547. https://doi.org/10.1080/10635150590950326
dc.identifier.citedreferenceHofstetter, R., & Gasc, J. P. ( 1969 ). Vertebrae and ribs of modern reptiles. In C. Gans, D. A. Bellairs, & T. S. Parsons (Eds.), Biology of the Reptilia (Vol. 1, pp. 201 – 301 ). London, England: Academic Press.
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30 ( 4 ), 772 – 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceKing, D. ( 1964 ). The osteology of the water skink, Lygosoma ( Sphenomorphus ) quoyii. Australian Journal of Zoology, 12 ( 2 ), 201 – 216. https://doi.org/10.1071/ZO9640201
dc.identifier.citedreferenceKlein, N., Scheyer, T., & Tütken, T. ( 2009 ). Skeletochronology and isotopic analysis of a captive individual of Alligator mississippiensis Daudin, 1802. Fossil Record, 12 ( 2 ), 121 – 131. https://doi.org/10.1002/mmng.200900002
dc.identifier.citedreferenceKluge, A. G. ( 1967 ). Higher taxonomic categories of Gekkonid lizards and their evolution. Bulletin of the American Museum of Natural History, 135 ( 1 ), 1 – 60.
dc.identifier.citedreferenceKraft, R. ( 1995 ). Xenarthra. In J. Niethammer, H. Schliemann, & D. Starck (Eds.), Handbuch der Zoologie (Vol. 8 ). Berlin, Germany: Walter de Gruyter.
dc.identifier.citedreferenceKrause, D. W., Evans, S. E., & Gao, K.‐Q. ( 2003 ). First definitive record of Mesozoic lizards from Madagascar. Journal of Vertebrate Paleontology, 23 ( 4 ), 842 – 856. https://doi.org/10.1671/9
dc.identifier.citedreferenceKrmpotic, C. M., Ciancio, M. R., Carlini, A. A., Castro, M. C., Scarano, A. C., & Barbeito, C. G. ( 2015 ). Comparative histology and ontogenetic change in the carapace of armadillos (Mammalia: Dasypodidae). Zoomorphology, 134 ( 4 ), 601 – 616. https://doi.org/10.1007/s00435-015-0281-8
dc.identifier.citedreferenceLamb, A. D., Watkins‐Colwell, G. J., Moore, J. A., Warren, D. L., Iglesias, T. L., Brandley, M. C., & Dornburg, A. ( 2017 ). Endolymphatic sac use and reproductive activity in the Lesser Antilles endemic gecko Gonatodes antillensis (Gekkota: Sphaerodactylidae). Bulletin of the Peabody Museum of Natural History, 58 ( 1 ), 17 – 30. https://doi.org/10.3374/014.058.0103
dc.identifier.citedreferenceLanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. ( 2016 ). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic datasets. Molecular Biology and Evolution, 34 ( 3 ), 772 – 773. https://doi.org/10.1093/molbev/msw260
dc.identifier.citedreferenceLevrat‐Calviac, V. ( 1986 ). Étude comparée des ostéodermes de Tarentola mauritanica et de T. neglecta (Gekkonidae, Squamata). Archives d’Anatomie Microscopique et de Morphologie Expérimentale, 75 ( 1 ), 29 – 43.
dc.identifier.citedreferenceLevrat‐Calviac, V., & Zylberberg, L. ( 1986 ). The structure of the osteoderms in the gekko: Tarentola mauritanica. American Journal of Anatomy, 176 ( 4 ), 437 – 446. https://doi.org/10.1002/aja.1001760406
dc.identifier.citedreferenceLoveridge, A. ( 1947 ). Revision of the African lizards of the family Gekkonidae. Bulletin of the Museum of Comparative. Zoology, 98, 1 – 469.
dc.identifier.citedreferenceMaisano, J. A. ( 2002 ). Terminal fusions of skeletal elements as indicators of maturity in squamates. Journal of Vertebrate Paleontology, 22 ( 2 ), 268 – 275. https://doi.org/10.1671/0272-4634(2002)022[0268:TFOSEA]2.0.CO;2
dc.identifier.citedreferenceMaisano, J. A., Bell, C. J., Gauthier, J. A., & Rowe, T. ( 2002 ). The osteoderms and palpebral in Lanthanotus borneensis (Squamata: Anguimorpha). Journal of Herpetology, 36 ( 4 ), 678 – 683. https://doi.org/10.1670/0022-1511(2002)036[0678:TOAPIL]2.0.CO;2
dc.identifier.citedreferenceMaisano, J. A., Laduc, T. J., Bell, C. J., & Barber, D. ( 2019 ). The cephalic osteoderms of Varanus komodoensis as revealed by high‐resolution X‐ray computed tomography. The Anatomical Record, 302, 1675 – 1680. https://doi.org/10.1002/ar.24197
dc.identifier.citedreferenceMangione, S., & Montero, R. ( 2001 ). The endolymphatic sacs in embryos of Amphisbaena Darwini. Journal of Herpetology, 35 ( 3 ), 524 – 529. https://doi.org/10.2307/1565977
dc.identifier.citedreferenceMarcellini, D. ( 1977 ). Acoustic and visual display behavior of gekkonid lizards. American Zoologist, 17 ( 1 ), 251 – 260. https://doi.org/10.1093/icb/17.1.251
dc.identifier.citedreferenceMartins, E. P., & Hansen, T. F. ( 1997 ). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149 ( 4 ), 646 – 667. https://doi.org/10.1086/286013
dc.identifier.citedreferenceMcConnachie, S., & Whiting, M. J. ( 2003 ). Costs associated with tail autotomy in an ambush foraging lizard, Cordylus melanotus melanotus. African Zoology, 38 ( 1 ), 57 – 65. https://doi.org/10.1080/15627020.2003.11657194
dc.identifier.citedreferenceMcDowell, S. B., & Bogert, C. M. ( 1954 ). The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105, 1 – 142.
dc.identifier.citedreferenceMoss, M. L. ( 1969 ). Comparative histology of dermal sclerifications in reptiles. Acta Anatomica, 73 ( 4 ), 510 – 533. https://doi.org/10.1159/000143315
dc.identifier.citedreferenceNguyen, L.‐T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. ( 2015 ). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32 ( 1 ), 268 – 274. https://doi.org/10.1093/molbev/msu300
dc.identifier.citedreferenceNiethammer, J. ( 1975 ). Hautverknöcherungen im schwanz von stachelmäusen ( Acomys dimidiatus ). Bonner Zoologische Beiträge, 26 ( 1–3 ), 100 – 106.
dc.identifier.citedreferenceOliver, J. A. ( 1951 ). Ontogenetic changes in osteodermal ornamentation in skinks. Copeia, 1951 ( 2 ), 127 – 130. https://doi.org/10.2307/1437541
dc.identifier.citedreferenceOtto, H., & Coburg, S. ( 1909 ). Die Beschuppung der Brevilinguier und Ascalaboten. Jenaische Zeitschrift für Naturwissenschaft, 37, 193 – 252.
dc.identifier.citedreferencePaluh, D. J., & Bauer, A. M. ( 2017 ). Comparative skull anatomy of terrestrial and crevice‐dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology. PLoS One, 12 ( 9 ), e0184414. https://doi.org/10.1371/journal.pone.0184414
dc.identifier.citedreferencePaluh, D. J., Griffing, A. H., & Bauer, A. M. ( 2017 ). Sheddable armour: Identification of osteoderms in the integument of Geckolepis maculata (Gekkota). African Journal of Herpetology, 66 ( 1 ), 12 – 24. https://doi.org/10.1080/21564574.2017.1281172
dc.identifier.citedreferenceParadis, E., & Schliep, K. ( 2018 ). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526 – 528. https://doi.org/10.1093/bioinformatics/bty633
dc.identifier.citedreferenceParker, H. W., & Taylor, R. H. R. ( 1942 ). The lizards of British Somaliland. Bulletin of the Museum of Comparative Zoology, 91, 1 – 101.
dc.identifier.citedreferenceR Core Team. ( 2012 ). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Retrieved from http://www.R-project.org
dc.identifier.citedreferenceRasband, W. S. ( 2018 ). US Image J. Bethesda, MD: National Institutes of Health Retrieved from https://imagej.nih.gov/ij/
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.