Show simple item record

Coordinated Groundâ Based and Spaceâ Based Observations of Equatorial Plasma Bubbles

dc.contributor.authorAa, Ercha
dc.contributor.authorZou, Shasha
dc.contributor.authorEastes, Richard
dc.contributor.authorKaran, Deepak K.
dc.contributor.authorZhang, Shun‐rong
dc.contributor.authorErickson, Philip J.
dc.contributor.authorCoster, Anthea J.
dc.date.accessioned2020-02-05T15:04:37Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:04:37Z
dc.date.issued2020-01
dc.identifier.citationAa, Ercha; Zou, Shasha; Eastes, Richard; Karan, Deepak K.; Zhang, Shun‐rong ; Erickson, Philip J.; Coster, Anthea J. (2020). "Coordinated Groundâ Based and Spaceâ Based Observations of Equatorial Plasma Bubbles." Journal of Geophysical Research: Space Physics 125(1): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/153570
dc.description.abstractThis paper presents coordinated and fortuitous groundâ based and spaceborne observations of equatorial plasma bubbles (EPBs) over the South American area on 24 October 2018, combining the following measurements: Globalâ scale Observations of Limb and Disk far ultraviolet emission images, Global Navigation Satellite System total electron content data, Swarm in situ plasma density observations, ionosonde virtual height and drift data, and cloud brightness temperature data. The new observations from the Globalâ scale Observations of Limb and Disk/ultraviolet imaging spectrograph taken at geostationary orbit provide a unique opportunity to image the evolution of plasma bubbles near the F peak height over a large geographic area from a fixed longitude location. The combined multiâ instrument measurements provide a more integrated and comprehensive way to study the morphological structure, development, and seeding mechanism of EPBs. The main results of this study are as follows: (1) The bubbles developed a westward tilted structure with 10â 15° inclination relative to the local geomagnetic field lines, with eastward drift velocity of 80â 120 m/s near the magnetic equator that gradually decreased with increasing altitude/latitude. (2) Waveâ like oscillations in the bottomside F layer and detrended total electron content were observed, which are probably due to upward propagating atmospheric gravity waves. The wavelength based on the mediumâ scale traveling ionospheric disturbance signature was consistent with the interbubble distance of â ¼500â 800 km. (3) The atmospheric gravity waves that originated from tropospheric convective zone are likely to play an important role in seeding the development of this equatorial EPBs event.Plain Language SummaryThis study presents multiâ instrument observations of equatorial plasma density depletions occurred on 24 October 2018 by using Globalâ scale Observations of Limb and Disk far ultraviolet images, Global Navigation Satellite System total electron content data, electron density measurements from Swarm satellite, ionosonde measurements, and cloud temperature data. This multiâ instrument study generated an integrated and detailed image revealing both largeâ scale and mesoscale structures of the equatorial plasma depletion. Our results also suggest that atmospheric gravity waves originating from tropospheric convection activity could play a significant seeding role in the development of equatorial plasma bubbles.Key PointsCombined GOLD/UV spectrograph images and groundâ based TEC data revealed EPB features and development over a large geographic areaBottomside F layer oscillations and traveling ionospheric disturbance were observed by ionosonde and detrended TEC resultsAtmospheric gravity waves likely play an important role in seeding the Râ T instability and the development of this EPB event
dc.publisherWiley Periodicals, Inc.
dc.titleCoordinated Groundâ Based and Spaceâ Based Observations of Equatorial Plasma Bubbles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153570/1/jgra55456_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153570/2/jgra55456.pdf
dc.identifier.doi10.1029/2019JA027569
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRodrigues, F. S., Hickey, D. A., Zhan, W., Martinis, C. R., Fejer, B. G., Milla, M. A., & Arratia, J. F. ( 2018 ). Multiâ instrumented observations of the equatorial F â region during June solstice: Largeâ scale wave structures and spreadâ F. Progress in Earth and Planetary Science, 5, 14. https://doi.org/10.1186/s40645-018-0170-0
dc.identifier.citedreferenceSun, L., Xu, J., Wang, W., Yuan, W., Li, Q., & Jiang, C. ( 2016 ). A statistical analysis of equatorial plasma bubble structures based on an allâ sky airglow imager network in China. Journal of Geophysical Research: Space Physics, 121, 11,495 â 11,517. https://doi.org/10.1002/2016JA022950
dc.identifier.citedreferenceTakahashi, H., Wrasse, C. M., Otsuka, Y., Ivo, A., Gomes, V., Paulino, I., Medeiros, A. F., Denardini, C. M., Santâ Anna, N., & Shiokawa, K. ( 2015 ). Plasma bubble monitoring by TEC map and 630 nm airglow image. Journal of Atmospheric and Solarâ Terrestrial Physics, 130, 151 â 158. https://doi.org/10.1016/j.jastp.2015.06.003
dc.identifier.citedreferenceTaori, A., Parihar, N., Ghodpage, R., Dashora, N., Sripathi, S., Kherani, E. A., & Patil, P. T. ( 2015 ). Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data. Journal of Geophysical Research: Space Physics, 120, 8835 â 8847. https://doi.org/10.1002/2015JA021541
dc.identifier.citedreferenceTsunoda, R. T. ( 2010 ). On equatorial spread F: Establishing a seeding hypothesis. Journal of Geophysical Research, 115, A12303. https://doi.org/10.1029/2010JA015564
dc.identifier.citedreferenceTsunoda, R. T. ( 2015 ). Upwelling: A unit of disturbance in equatorial spread F. Progress in Earth and Planetary Science, 2, 9. https://doi.org/10.1186/s40645-015-0038-5
dc.identifier.citedreferenceTsunoda, R. T., Livingston, R. C., McClure, J. P., & Hanson, W. B. ( 1982 ). Equatorial plasma bubblesâ Vertically elongated wedges from the bottomside F layer. Journal of Geophysical Research, 87, 9171 â 9180. https://doi.org/10.1029/JA087iA11p09171
dc.identifier.citedreferenceTsunoda, R. T., Yamamoto, M., Tsugawa, T., Hoang, T. L., Tulasi Ram, S., Thampi, S. V., Chau, H. D., & Nagatsuma, T. ( 2011 ). On seeding, largeâ scale wave structure, equatorial spread F, and scintillations over Vietnam. Geophysical Research Letters, 38, L20102. https://doi.org/10.1029/2011GL049173
dc.identifier.citedreferenceTulasi Ram, S., Ajith, K. K., Yokoyama, T., Yamamoto, M., & Niranjan, K. ( 2017 ). Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations. Journal of Geophysical Research: Space Physics, 122, 6584 â 6594. https://doi.org/10.1002/2017JA024260
dc.identifier.citedreferenceTulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113, A07310. https://doi.org/10.1029/2007JA012922
dc.identifier.citedreferenceTulasi Ram, S., Yamamoto, M., Tsunoda, R. T., Chau, H. D., Hoang, T. L., Damtie, B., Wassaie, M., Yatini, C. Y., Manik, T., & Tsugawa, T. ( 2014 ). Characteristics of largeâ scale wave structure observed from African and Southeast Asian longitudinal sectors. Journal of Geophysical Research: Space Physics, 119, 2288 â 2297. https://doi.org/10.1002/2013JA019712
dc.identifier.citedreferenceVadas, S. L. ( 2007 ). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. Journal of Geophysical Research, 112, A06305. https://doi.org/10.1029/2006JA011845
dc.identifier.citedreferenceVadas, S. L., & Liu, H.â l. ( 2009 ). Generation of largeâ scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. Journal of Geophysical Research, 114, A10310. https://doi.org/10.1029/2009JA014108
dc.identifier.citedreferenceValladares, C. E., & Sheehan, R. ( 2016 ). Observations of conjugate MSTIDs using networks of GPS receivers in the American sector. Radio Science, 51, 1470 â 1488. https://doi.org/10.1002/2016RS005967
dc.identifier.citedreferenceVierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J., & Norberg, J. ( 2016 ). Statistical framework for estimating GNSS bias. Atmospheric Measurement Techniques, 9, 1303 â 1312. https://doi.org/10.5194/amt-9-1303-2016
dc.identifier.citedreferenceWoodman, R. F., & La Hoz, C. ( 1976 ). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81 ( 31 ), 5447 â 5466. https://doi.org/10.1029/JA081i031p05447
dc.identifier.citedreferenceXiong, C., Stolle, C., Lühr, H., Park, J., Fejer, B. G., & Kervalishvili, G. N. ( 2016 ). Scale analysis of equatorial plasma irregularities derived from Swarm constellation. Earth, Planets and Space, 68, 121. https://doi.org/10.1186/s40623-016-0502-5
dc.identifier.citedreferenceYiǧit, E., Medvedev, A. S., Aylward, A. D., Ridley, A. J., Harris, M. J., Moldwin, M. B., & Hartogh, P. ( 2012 ). Dynamical effects of internal gravity waves in the equinoctial thermosphere. Journal of Atmospheric and Solarâ Terrestrial Physics, 90, 104 â 116. https://doi.org/10.1016/j.jastp.2011.11.014
dc.identifier.citedreferenceYizengaw, E., & Groves, K. M. ( 2018 ). Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics. Space Weather, 16, 946 â 968. https://doi.org/10.1029/2018SW001980
dc.identifier.citedreferenceYokoyama, T., & Fukao, S. ( 2006 ). Upwelling backscatter plumes in growth phase of equatorial spread F observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 33, L08104. https://doi.org/10.1029/2006GL025680
dc.identifier.citedreferenceZakharenkova, I., Astafyeva, E., & Cherniak, I. ( 2016 ). GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth, Planets and Space, 68, 120. https://doi.org/10.1186/s40623-016-0490-5
dc.identifier.citedreferenceZhang, S.â R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., & Vierinen, J. ( 2017 ). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophysical Research Letters, 44, 12,067 â 12,073. https://doi.org/10.1002/2017GL076054
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., Chen, Y., Shen, H., Yuan, T., Li, J., & Wang, T. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16, 321 â 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAa, E., Zou, S., Ridley, A. J., Zhang, S.â R., Coster, A. J., Erickson, P. J., Liu, S., & Ren, J. ( 2019 ). Merging of stormâ time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17, 285 â 298. https://doi.org/10.1029/2018SW002101
dc.identifier.citedreferenceAbdu, M. A. ( 2005 ). Equatorial ionosphere thermosphere system: Electrodynamics and irregularities. Advances in Space Research, 35, 771 â 787. https://doi.org/10.1016/j.asr.2005.03.150
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ). Equatorial spread F /plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Terrestrial Physics, 75, 44 â 56. https://doi.org/10.1016/j.jastp.2011.04.024
dc.identifier.citedreferenceAbdu, M. A., Alam Kherani, E., Batista, I. S., de Paula, E. R., Fritts, D. C., & Sobral, J. H. A. ( 2009 ). Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Annales Geophysicae, 27, 2607 â 2622. https://doi.org/10.5194/angeo-27-2607-2009
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108 ( A12 ), 1449. https://doi.org/10.1029/2002JA009721
dc.identifier.citedreferenceAjith, K. K., Ram, S. T., Yamamoto, M., Yokoyama, T., Gowtam, V. S., Otsuka, Y., Tsugawa, T., & Niranjan, K. ( 2015 ). Explicit characteristics of evolutionaryâ type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010â 2012. Journal of Geophysical Research: Space Physics, 120, 1371 â 1382. https://doi.org/10.1002/2014JA020878
dc.identifier.citedreferenceAzeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., & Crowley, G. ( 2015 ). Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophysical Research Letters, 42, 7874 â 7880. https://doi.org/10.1002/2015GL065903
dc.identifier.citedreferenceBarros, D., Takahashi, H., Wrasse, C. M., & Figueiredo, C. A. O. B. ( 2018 ). Characteristics of equatorial plasma bubbles observed by TEC map based on groundâ based GNSS receivers over South America. Annales Geophysicae, 36, 91 â 100. https://doi.org/10.5194/angeo-36-91-2018
dc.identifier.citedreferenceBasu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P. R., & Beckerâ Guedes, F. ( 2007 ). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. Journal of Geophysical Research, 112, A08308. https://doi.org/10.1029/2006JA012192
dc.identifier.citedreferenceBuhari, S. M., Abdullah, M., Hasbi, A. M., Otsuka, Y., Yokoyama, T., Nishioka, M., & Tsugawa, T. ( 2014 ). Continuous generation and twoâ dimensional structure of equatorial plasma bubbles observed by highâ density GPS receivers in Southeast Asia. Journal of Geophysical Research: Space Physics, 119, 10,569 â 10,580. https://doi.org/10.1002/2014JA020433
dc.identifier.citedreferenceBuhari, S. M., Abdullah, M., Yokoyama, T., Otsuka, Y., Nishioka, M., Hasbi, A. M., Bahari, S. A., & Tsugawa, T. ( 2017 ). Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia. Journal of Geophysical Research: Space Physics, 122, 2174 â 2184. https://doi.org/10.1002/2016JA023202
dc.identifier.citedreferenceBurke, W., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. ( 2004 ). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSATâ 1. Journal of Geophysical Research, 109, A12301. https://doi.org/10.1029/2004JA010583
dc.identifier.citedreferenceBurke, W., Huang, C., Gentile, L., & Bauer, L. ( 2004 ). Seasonalâ longitudinal variability of equatorial plasma bubbles. Annales Geophysicae, 22, 3089 â 3098. https://doi.org/10.5194/angeo-22-3089-2004
dc.identifier.citedreferenceCarter, B. A., Zhang, K., Norman, R., Kumar, V. V., & Kumar, S. ( 2013 ). On the occurrence of equatorial Fâ region irregularities during solar minimum using radio occultation measurements. Journal of Geophysical Research: Space Physics, 118, 892 â 904. https://doi.org/10.1002/jgra.50089
dc.identifier.citedreferenceChapagain, N. P., Makela, J. J., Meriwether, J. W., Fisher, D. J., Buriti, R. A., & Medeiros, A. F. ( 2012 ). Comparison of nighttime zonal neutral winds and equatorial plasma bubble drift velocities over Brazil. Journal of Geophysical Research, 117, A06309. https://doi.org/10.1029/2012JA017620
dc.identifier.citedreferenceCherniak, I., Krankowski, A., & Zakharenkova, I. ( 2014 ). Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Science, 49, 653 â 662. https://doi.org/10.1002/2014RS005433
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2016 ). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11,137 â 11,145. https://doi.org/10.1002/2016GL071421
dc.identifier.citedreferenceCherniak, I., Zakharenkova, I., & Sokolovsky, S. ( 2019 ). Multiâ instrumental observation of stormâ induced ionospheric plasma bubbles at equatorial and middle latitudes. Journal of Geophysical Research: Space Physics, 124, 1491 â 1508. https://doi.org/10.1029/2018JA026309
dc.identifier.citedreferenceComberiate, J., & Paxton, L. J. ( 2010 ). Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI. Space Weather, 8, S10002. https://doi.org/10.1029/2009SW000546
dc.identifier.citedreferenceCoster, A. J., Goncharenko, L., Zhang, S.â R., Erickson, P. J., Rideout, W., & Vierinen, J. ( 2017 ). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophysical Research Letters, 44, 12,041 â 12,048. https://doi.org/10.1002/2017GL075774
dc.identifier.citedreferenceEastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Codrescu, M., Correira, J. T., Daniell, R. E., England, S. L., Evans, J. S., Harvey, J., Krywonos, A., Lumpe, J. D., Richmond, A. D., Rusch, D. W., Siegmund, O., Solomon, S. C., Strickland, D. J., Woods, T. N., Aksnes, A., Budzien, S. A., Dymond, K. F., Eparvier, F. G., Martinis, C. R., & Oberheide, J. ( 2017 ). The globalâ scale observations of the limb and disk (GOLD) Mission. Space Science Reviews, 212, 383 â 408. https://doi.org/10.1007/s11214-017-0392-2
dc.identifier.citedreferenceEastes, R. W., Solomon, S. C., Daniell, R. E., Anderson, D. N., Burns, A. G., England, S. L., Martinis, C. R., & McClintock, W. E. ( 2019 ). Globalâ scale observations of the equatorial ionization anomaly. Geophysical Research Letters, 46, 9318 â 9326. https://doi.org/10.1029/2019GL084199
dc.identifier.citedreferenceEbihara, Y., & Tanaka, T. ( 2015 ). Substorm simulation: Insight into the mechanisms of initial brightening. Journal of Geophysical Research: Space Physics, 120, 7270 â 7288. https://doi.org/10.1002/2015JA021516
dc.identifier.citedreferenceFejer, B. G., Scherliess, L., & de Paula, E. R. ( 1999 ). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. Journal of Geophysical Research, 104, 19,859 â 19,870. https://doi.org/10.1029/1999JA900271
dc.identifier.citedreferenceGurav, O. B., Sharma, A. K., Ghodpage, R. N., Nade, D. P., Chavan, G. A., Gaikwad, H. P., & Patil, P. T. ( 2018 ). Zonal drift velocity of equatorial plasma bubbles during ascending phase of 24th solar cycle using allâ sky imager over Kolhapur India. Journal of Geophysical Research: Space Physics, 123, 10,266 â 10,282. https://doi.org/10.1029/2018JA025810
dc.identifier.citedreferenceHickey, D. A., Martinis, C. R., Mendillo, M., Baumgardner, J., Wroten, J., & Milla, M. ( 2018 ). Simultaneous 6300 Ã airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator. Annales Geophysicae, 36 ( 2 ), 473 â 487. https://doi.org/10.5194/angeo-36-473-2018
dc.identifier.citedreferenceHoffmann, L., & Alexander, M. J. ( 2010 ). Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115, D20111. https://doi.org/10.1029/2010JD014401
dc.identifier.citedreferenceHuang, C.â S., de La Beaujardiere, O., Pfaff, R. F., Retterer, J. M., Roddy, P. A., Hunton, D. E., Su, Y.â J., Su, S.â Y., & Rich, F. J. ( 2010 ). Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure. Journal of Geophysical Research, 115, A07316. https://doi.org/10.1029/2010JA015324
dc.identifier.citedreferenceHuang, C.â S., La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. ( 2014 ). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008â 2012). Journal of Geophysical Research: Space Physics, 119, 1186 â 1199. https://doi.org/10.1002/2013JA019212
dc.identifier.citedreferenceHuang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., & Sultan, P. J. ( 2002 ). Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology. Journal of Geophysical Research, 107 ( A12 ), 1434. https://doi.org/10.1029/2002JA009452
dc.identifier.citedreferenceHuba, J. D., Ossakow, S. L., Joyce, G., Krall, J., & England, S. L. ( 2009 ). Threeâ dimensional equatorial spread F modeling: Zonal neutral wind effects. Geophysical Research Letters, 36, L19106. https://doi.org/10.1029/2009GL040284
dc.identifier.citedreferenceHysell, D. L. ( 2000 ). An overview and synthesis of plasma irregularities in equatorial spread/ F. Journal of Atmospheric and Solarâ Terrestrial Physics, 62, 1037 â 1056. https://doi.org/10.1016/S1364-6826(00)00095-X
dc.identifier.citedreferenceHysell, D. L., Kudeki, E., & Chau, J. L. ( 2005 ). Possible ionospheric preconditioning by shear flow leading to equatorial spread F. Annales Geophysicae, 23, 2647 â 2655. https://doi.org/10.5194/angeo-23-2647-2005
dc.identifier.citedreferenceHysell, D. L., Larsen, M. F., Swenson, C. M., & Wheeler, T. F. ( 2006 ). Shear flow effects at the onset of equatorial spread F. Journal of Geophysical Research, 111, A11317. https://doi.org/10.1029/2006JA011963
dc.identifier.citedreferenceJanowiak, J., Joyce, B., & Xie, P. ( 2017 ). NCEP/CPC l3 half hourly 4km global (60°Sâ 60°N) merged IR v1, doi: 10.5067/P4HZB9N27EKU.
dc.identifier.citedreferenceJin, H., Zou, S., Chen, G., Yan, C., Zhang, S., & Yang, G. ( 2018 ). Formation and evolution of lowâ latitude F region fieldâ aligned irregularities during the 7â 8 September 2017 storm: Hainan coherent scatter phased array radar and Digisonde Observations. Space Weather, 16, 648 â 659. https://doi.org/10.1029/2018SW001865
dc.identifier.citedreferenceJonah, O. F., Coster, A., Zhang, S., Goncharenko, L., Erickson, P. J., de Paula, E. R., & Kherani, E. A. ( 2018 ). TID observations and source analysis during the 2017 Memorial Day weekend geomagnetic storm over North America. Journal of Geophysical Research: Space Physics, 123, 8749 â 8765. https://doi.org/10.1029/2018JA025367
dc.identifier.citedreferenceKatamziâ Joseph, Z. T., Habarulema, J. B., & Hernándezâ Pajares, M. ( 2017 ). Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather, 15 ( 9 ), 1177 â 1190. https://doi.org/10.1002/2017SW001674
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Paxton, L. J., Kamalabadi, F., Comberiate, J. M., & Kil, H. ( 2003 ). The first coordinated groundâ and spaceâ based optical observations of equatorial plasma bubbles. Geophysical Research Letters, 30 ( 14 ), 1766. https://doi.org/10.1029/2003GL017301
dc.identifier.citedreferenceKil, H. ( 2015 ). The morphology of equatorial plasma bubblesâ A review. Journal of Astronomy and Space Sciences, 32, 13 â 19. https://doi.org/10.5140/JASS.2015.32.1.13
dc.identifier.citedreferenceKil, H., Heelis, R. A., Paxton, L. J., & Oh, S.â J. ( 2009 ). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114, A11302. https://doi.org/10.1029/2009JA014369
dc.identifier.citedreferenceKil, H., Kintner, P. M., de Paula, E. R., & Kantor, I. J. ( 2002 ). Latitudinal variations of scintillation activity and zonal plasma drifts in South America. Radio Science, 37 ( 1 ), 1006. https://doi.org/10.1029/2001RS002468
dc.identifier.citedreferenceKil, H., Su, S.â Y., Paxton, L. J., Wolven, B. C., Zhang, Y., Morrison, D., & Yeh, H. C. ( 2004 ). Coincident equatorial bubble detection by TIMED/GUVI and ROCSATâ 1. Geophysical Research Letters, 31, L03809. https://doi.org/10.1029/2003GL018696
dc.identifier.citedreferenceKrall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., & Kelley, M. C. ( 2011 ). Modeling of equatorial plasma bubbles triggered by nonâ equatorial traveling ionospheric disturbances. Geophysical Research Letters, 38, L08103. https://doi.org/10.1029/2011GL046890
dc.identifier.citedreferenceKudeki, E., Akgiray, A., Milla, M., Chau, J. L., & Hysell, D. L. ( 2007 ). Equatorial spreadâ F initiation: Postâ sunset vortex, thermospheric winds, gravity waves. Journal of Atmospheric and Solarâ Terrestrial Physics, 69, 2416 â 2427. https://doi.org/10.1016/j.jastp.2007.04.012
dc.identifier.citedreferenceLi, G., Ning, B., Abdu, M. A., Otsuka, Y., Yokoyama, T., Yamamoto, M., & Liu, L. ( 2013 ). Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. Journal of Geophysical Research: Space Physics, 118, 6544 â 6557. https://doi.org/10.1002/jgra.50581
dc.identifier.citedreferenceLi, G., Ning, B., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., & Chen, J. ( 2018 ). Stormâ enhanced development of postâ sunset equatorial plasma bubbles around the meridian 120E/60W on 7â 8 September 2017. Journal of Geophysical Research: Space Physics, 123, 7985 â 7998. https://doi.org/10.1029/2018JA025871
dc.identifier.citedreferenceLi, G., Otsuka, Y., Ning, B., Abdu, M. A., Yamamoto, M., Wan, W., Liu, L., & Abadi, P. ( 2016 ). Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophysical Research Letters, 43, 2389 â 2395. https://doi.org/10.1002/2016GL068145
dc.identifier.citedreferenceLühr, H., Xiong, C., Park, J., & Rauberg, J. ( 2014 ). Systematic study of intermediateâ scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations. Frontiers in Physics, 2, 15. https://doi.org/10.3389/fphy.2014.00015
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMakela, J. J. ( 2006 ). A review of imaging lowâ latitude ionospheric irregularity processes. Journal of Atmospheric and Solarâ Terrestrial Physics, 68, 1441 â 1458. https://doi.org/10.1016/j.jastp.2005.04.014
dc.identifier.citedreferenceMandal, S., Pallamraju, D., Karan, D. K., Phadke, K. A., Singh, R. P., & Suryawanshi, P. ( 2019 ). On deriving gravity wave characteristics in the daytime upper atmosphere using radio technique. Journal of Geophysical Research: Space Physics, 124, 6985 â 6997. https://doi.org/10.1029/2019JA026723
dc.identifier.citedreferenceMartinis, C., Baumgardner, J., Mendillo, M., Wroten, J., Coster, A., & Paxton, L. ( 2015 ). The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 120, 8085 â 8095. https://doi.org/10.1002/2015JA021555
dc.identifier.citedreferenceMartinis, C., Eccles, J. V., Baumgardner, J., Manzano, J., & Mendillo, M. ( 2003 ). Latitude dependence of zonal plasma drifts obtained from dualâ site airglow observations. Journal of Geophysical Research, 108 ( A3 ), 1129. https://doi.org/10.1029/2002JA009462
dc.identifier.citedreferenceMcClure, J. P., Singh, S., Bamgboye, D. K., Johnson, F. S., & Kil, H. ( 1998 ). Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding. Journal of Geophysical Research, 103, 29,119 â 29,136. https://doi.org/10.1029/98JA02749
dc.identifier.citedreferenceMiller, E. S., Makela, J. J., & Kelley, M. C. ( 2009 ). Seeding of equatorial plasma depletions by polarization electric fields from middle latitudes: Experimental evidence. Geophysical Research Letters, 36, L18105. https://doi.org/10.1029/2009GL039695
dc.identifier.citedreferenceNishioka, M., Saito, A., & Tsugawa, T. ( 2008 ). Occurrence characteristics of plasma bubble derived from global groundâ based GPS receiver networks. Journal of Geophysical Research, 113, A05301. https://doi.org/10.1029/2007JA012605
dc.identifier.citedreferenceOtsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. ( 2002 ). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29 ( 15 ), 1753. https://doi.org/10.1029/2002GL015347
dc.identifier.citedreferencePerkins, F. ( 1973 ). Spread F and ionospheric currents. Journal of Geophysical Research, 78, 218 â 226. https://doi.org/10.1029/JA078i001p00218
dc.identifier.citedreferencePimenta, A. A., Fagundes, P. R., Sahai, Y., Bittencourt, J. A., & Abalde, J. R. ( 2003 ). Equatorial F â region plasma depletion drifts: Latitudinal and seasonal variations. Annales Geophysicae, 21, 2315 â 2322. https://doi.org/10.5194/angeo-21-2315-2003
dc.identifier.citedreferenceReinisch, B. W., & Huang, X. ( 2001 ). Deducing topside profiles and total electron content from bottomside ionograms. Advances in Space Research, 27, 23 â 30. https://doi.org/10.1016/S0273-1177(00)00136-8
dc.identifier.citedreferenceRetterer, J. M. ( 2010 ). Forecasting lowâ latitude radio scintillation with 3â D ionospheric plume models: 1. Plume model. Journal of Geophysical Research, 115, A03306. https://doi.org/10.1029/2008JA013839
dc.identifier.citedreferenceRetterer, J. M., & Roddy, P. ( 2014 ). Faith in a seed: On the origins of equatorial plasma bubbles. Annales de Geophysique, 32, 485 â 498. https://doi.org/10.5194/angeo-32-485-2014
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated gps processing for global total electron content data. GPS Solutions, 10 ( 3 ), 219 â 228. https://doi.org/10.1007/s10291-006-0029-5
dc.identifier.citedreferenceRishbeth, H. ( 1997 ). The ionospheric E â layer and F â layer dynamosâ A tutorial review. Journal of Atmospheric and Solarâ Terrestrial Physics, 59, 1873 â 1880. https://doi.org/10.1016/S1364-6826(97)00005-9
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Lynn, K. J., Wilkinson, P., & Tsugawa, T. ( 2015 ). Airglowâ imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth, Planets and Space, 67, 43. https://doi.org/10.1186/s40623-015-0202-6
dc.identifier.citedreferenceSmith, J., & Heelis, R. A. ( 2017 ). Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. Journal of Geophysical Research: Space Physics, 122, 5743 â 5755. https://doi.org/10.1002/2017JA024128
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.