Show simple item record

The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty

dc.contributor.authorLawrence, David M.
dc.contributor.authorFisher, Rosie A.
dc.contributor.authorKoven, Charles D.
dc.contributor.authorOleson, Keith W.
dc.contributor.authorSwenson, Sean C.
dc.contributor.authorBonan, Gordon
dc.contributor.authorCollier, Nathan
dc.contributor.authorGhimire, Bardan
dc.contributor.authorKampenhout, Leo
dc.contributor.authorKennedy, Daniel
dc.contributor.authorKluzek, Erik
dc.contributor.authorLawrence, Peter J.
dc.contributor.authorLi, Fang
dc.contributor.authorLi, Hongyi
dc.contributor.authorLombardozzi, Danica
dc.contributor.authorRiley, William J.
dc.contributor.authorSacks, William J.
dc.contributor.authorShi, Mingjie
dc.contributor.authorVertenstein, Mariana
dc.contributor.authorWieder, William R.
dc.contributor.authorXu, Chonggang
dc.contributor.authorAli, Ashehad A.
dc.contributor.authorBadger, Andrew M.
dc.contributor.authorBisht, Gautam
dc.contributor.authorBroeke, Michiel
dc.contributor.authorBrunke, Michael A.
dc.contributor.authorBurns, Sean P.
dc.contributor.authorBuzan, Jonathan
dc.contributor.authorClark, Martyn
dc.contributor.authorCraig, Anthony
dc.contributor.authorDahlin, Kyla
dc.contributor.authorDrewniak, Beth
dc.contributor.authorFisher, Joshua B.
dc.contributor.authorFlanner, Mark
dc.contributor.authorFox, Andrew M.
dc.contributor.authorGentine, Pierre
dc.contributor.authorHoffman, Forrest
dc.contributor.authorKeppel‐aleks, Gretchen
dc.contributor.authorKnox, Ryan
dc.contributor.authorKumar, Sanjiv
dc.contributor.authorLenaerts, Jan
dc.contributor.authorLeung, L. Ruby
dc.contributor.authorLipscomb, William H.
dc.contributor.authorLu, Yaqiong
dc.contributor.authorPandey, Ashutosh
dc.contributor.authorPelletier, Jon D.
dc.contributor.authorPerket, Justin
dc.contributor.authorRanderson, James T.
dc.contributor.authorRicciuto, Daniel M.
dc.contributor.authorSanderson, Benjamin M.
dc.contributor.authorSlater, Andrew
dc.contributor.authorSubin, Zachary M.
dc.contributor.authorTang, Jinyun
dc.contributor.authorThomas, R. Quinn
dc.contributor.authorVal Martin, Maria
dc.contributor.authorZeng, Xubin
dc.date.accessioned2020-02-05T15:04:49Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:04:49Z
dc.date.issued2019-12
dc.identifier.citationLawrence, David M.; Fisher, Rosie A.; Koven, Charles D.; Oleson, Keith W.; Swenson, Sean C.; Bonan, Gordon; Collier, Nathan; Ghimire, Bardan; Kampenhout, Leo; Kennedy, Daniel; Kluzek, Erik; Lawrence, Peter J.; Li, Fang; Li, Hongyi; Lombardozzi, Danica; Riley, William J.; Sacks, William J.; Shi, Mingjie; Vertenstein, Mariana; Wieder, William R.; Xu, Chonggang; Ali, Ashehad A.; Badger, Andrew M.; Bisht, Gautam; Broeke, Michiel; Brunke, Michael A.; Burns, Sean P.; Buzan, Jonathan; Clark, Martyn; Craig, Anthony; Dahlin, Kyla; Drewniak, Beth; Fisher, Joshua B.; Flanner, Mark; Fox, Andrew M.; Gentine, Pierre; Hoffman, Forrest; Keppel‐aleks, Gretchen ; Knox, Ryan; Kumar, Sanjiv; Lenaerts, Jan; Leung, L. Ruby; Lipscomb, William H.; Lu, Yaqiong; Pandey, Ashutosh; Pelletier, Jon D.; Perket, Justin; Randerson, James T.; Ricciuto, Daniel M.; Sanderson, Benjamin M.; Slater, Andrew; Subin, Zachary M.; Tang, Jinyun; Thomas, R. Quinn; Val Martin, Maria; Zeng, Xubin (2019). "The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty." Journal of Advances in Modeling Earth Systems 11(12): 4245-4287.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/153578
dc.description.abstractThe Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and timeâ evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.Plain Language SummaryThe Community Land Model (CLM) is the land component of the widely used Community Earth System Model (CESM). Here, we introduce model developments included in CLM version 5 (CLM5), the default land component for CESM2 which will be used for the Coupled Model Intercomparison Project (CMIP6). CLM5 includes many new and updated processes including (1) hydrology and snow features such as spatially explicit soil depth, canopy snow processes, a simple firn model, and a more mechanistic river model, (2) plant hydraulics and hydraulic redistribution, (3) revised nitrogen cycling with flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake, (4) expansion to six crop types (global) and timeâ evolving irrigated areas and fertilization rates, (5) improved urban building energy model, and (6) carbon isotopes. New optional features include a demographically structured dynamic vegetation model, ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Model performance is generally improved for most assessed variables and metrics, though clear establishment of improvement or degradation is challenging due to model complexity as well as observational data limitations. Nonetheless, CLM5 is increasingly suited for research into a broad range of societally relevant scientific questions related to the terrestrial system.Key PointsUpdated Community Land Model has more hydrological and ecological process fidelity and more comprehensive representation of land management.The model is systematically evaluated using International Land Model Benchmarking system and shows marked improvement over prior versions.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglobal land model
dc.subject.otherEarth System Modeling
dc.subject.othercarbon and nitrogen cycling
dc.subject.otherhydrology
dc.subject.otherbenchmarking
dc.titleThe Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153578/1/jame20995_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153578/2/jame20995.pdf
dc.identifier.doi10.1029/2018MS001583
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceOleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.â F., Mahowald, N., Niu, G.â Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z.â L., Zeng, X., & Zeng, X. ( 2010 ). Technical description of version 4.0 of the Community Land Model (NCAR Tech. Note NCAR/TNâ 478+STR). Retrieved from Boulder, CO: https://doi.org/10.1175/1520â 0442(1998)011<1307:tlscot>2.0.co;2
dc.identifier.citedreferenceMedlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.â P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S. A., Tjoelker, M. G., & Ellsworth, D. S. ( 2016 ). Using models to guide field experiments: A priori predictions for the CO 2 response of a nutrientâ and waterâ limited native Eucalypt woodland. Global Change Biology, 22 ( 8 ), 2834 â 2851. https://doi.org/10.1111/gcb.13268
dc.identifier.citedreferenceMedlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., & Wingate, L. ( 2011 ). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17 ( 6 ), 2134 â 2144. https://doi.org/10.1111/j.1365â 2486.2010.02375.x
dc.identifier.citedreferenceMedlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.â P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. ( 2015 ). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5 ( 6 ), 528 â 534. https://doi.org/10.1038/nclimate2621
dc.identifier.citedreferenceMeier, R., Davin, E. L., Lejeune, Q., Hauser, M., Li, Y., Martens, B., Schultz, N. M., Sterling, S., & Thiery, W. ( 2018 ). Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences, 15 ( 15 ), 4731 â 4757. https://doi.org/10.5194/bgâ 15â 4731â 2018
dc.identifier.citedreferenceMitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated highâ resolution grids. International Journal of Climatology, 25 ( 6 ), 693 â 712. https://doi.org/10.1002/joc.1181
dc.identifier.citedreferenceMueller, N. D., Rhines, A., Butler, E. E., Ray, D. K., Siebert, S., Holbrook, N. M., & Huybers, P. ( 2017 ). Global relationships between cropland intensification and summer temperature extremes over the last 50 years. Journal of Climate, 30 ( 18 ), 7505 â 7528. https://doi.org/10.1175/Jcliâ Dâ 17â 0096.1
dc.identifier.citedreferenceNegrónâ Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G., & Chambers, J. Q. ( 2015 ). Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 10 ( 6 ), 064017. https://doi.org/10.1088/1748â 9326/10/6/064017
dc.identifier.citedreferenceNiinemets, U., & Keenan, T. ( 2014 ). Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environmental and Experimental Botany, 103, 24 â 41. https://doi.org/10.1016/j.envexpbot.2013.11.008
dc.identifier.citedreferenceNiu, G. Y., & Yang, Z. L. ( 2007 ). An observationâ based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research, 112 ( D21 ). https://doi.org/10.1029/2007JD008674
dc.identifier.citedreferenceNiu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E., & Su, H. ( 2007 ). Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research, 112 ( D7 ). https://doi.org/10.1029/2006jd007522
dc.identifier.citedreferenceOleson, K., & Feddema, J. ( 2019 ). Parameterization and surface data improvements and new capabilities for the Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2018MS001586
dc.identifier.citedreferenceOleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., & Grimmond, C. S. B. ( 2008 ). An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. Journal of Applied Meteorology and Climatology, 47 ( 4 ), 1038 â 1060. https://doi.org/10.1175/2007JAMC1597.1
dc.identifier.citedreferenceKoven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.â F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., & Yang, Z.â L. ( 2013 ). Technical description of version 4.5 of the Community Land Model (CLM) (NCAR Tech. Note NCAR/TNâ 503 + STR). Retrieved from Boulder, CO: https://doi.org/10.5065/D6RR1W7M
dc.identifier.citedreferenceOleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., & Qian, T. ( 2008 ). Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research, 113 ( G1 ). https://doi.org/doi:10.1029/2007JG000563
dc.identifier.citedreferencePelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X. B., Troch, P. A., Niu, G. Y., Williams, Z., Brunke, M. A., & Gochis, D. ( 2016 ). A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8 ( 1 ), 41 â 65. https://doi.org/10.1002/2015ms000526
dc.identifier.citedreferencePeng, B., Guan, K. Y., Chen, M., Lawrence, D. M., Pokhrel, Y., Suyker, A., Arkebauer, T., & Lu, Y. ( 2018 ). Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250â 251, 64 â 89. https://doi.org/10.1016/j.agrformet.2017.11.012
dc.identifier.citedreferencePortmann, F. T., Siebert, S., & Döll, P. ( 2010 ). MIRCA2000â Global monthly irrigated and rainfed crop areas around the year 2000: A new highâ resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24 ( 1 ). https://doi.org/10.1029/2008GB003435
dc.identifier.citedreferencePowell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M., Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E., Williams, M., Meir, P., & Moorcroft, P. R. ( 2013 ). Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. The New Phytologist, 200 ( 2 ), 350 â 365. https://doi.org/10.1111/nph.12390
dc.identifier.citedreferenceQuiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren, T., Goldberg, D. W., & Li, Z. ( 2016 ). The North American Soil Moisture Database: Development and applications. Bulletin of the American Meteorological Society, 97 ( 8 ), 1441 â 1459. https://doi.org/10.1175/Bamsâ Dâ 13â 00263.1
dc.identifier.citedreferenceReich, P. B., Hungate, B. A., & Luo, Y. Q. ( 2006 ). Carbonâ nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37 ( 1 ), 611 â 636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
dc.identifier.citedreferenceRiley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., & Hess, P. ( 2011 ). Barriers to predicting global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8 ( 7 ), 1925 â 1953. https://doi.org/10.5194/bgâ 8â 1925â 2011
dc.identifier.citedreferenceRoesch, A., Wild, M., Gilgen, H., & Ohmura, A. ( 2001 ). A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dynamics, 17 ( 12 ), 933 â 946. https://doi.org/10.1007/s003820100153
dc.identifier.citedreferenceRogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, Ã ., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., & Zaehle, S. ( 2017 ). A roadmap for improving the representation of photosynthesis in Earth system models. The New Phytologist, 213 ( 1 ), 22 â 42. https://doi.org/10.1111/nph.14283
dc.identifier.citedreferenceSacks, W. J., Cook, B. I., Buenning, N., Levis, S., & Helkowski, J. H. ( 2009 ). Effects of global irrigation on the nearâ surface climate. Climate Dynamics, 33 ( 2â 3 ), 159 â 175. https://doi.org/DOI, https://doi.org/10.1007/s00382â 008â 0445â z
dc.identifier.citedreferenceSakaguchi, K., & Zeng, X. ( 2009 ). Effects of soil wetness, plant litter, and underâ canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3. 5). Journal of Geophysical Research. Atmospheres, 114 ( D1 ). https://doi.org/10.1029/2008jd010834
dc.identifier.citedreferenceSantoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. B. S., Hall, R. J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M., & Wegmüller, U. ( 2015 ). Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 168, 316 â 334. https://doi.org/10.1016/j.rse.2015.07.005
dc.identifier.citedreferenceSchlesinger, W. H., & Jasechko, S. ( 2014 ). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189â 190, 115 â 117. https://doi.org/10.1016/j.agrformet.2014.01.011
dc.identifier.citedreferenceSchneider, U., Becker, A., Finger, P., Meyerâ Christoffer, A., Ziese, M., & Rudolf, B. ( 2014 ). GPCC’s new land surface precipitation climatology based on qualityâ controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115 ( 1â 2 ), 15 â 40. https://doi.org/10.1007/s00704â 013â 0860â x
dc.identifier.citedreferenceSchultz, N. M., Lee, X., Lawrence, P. J., Lawrence, D. M., & Zhao, L. ( 2016 ). Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research: Atmospheres, 121, 6133 â 6147. https://doi.org/10.1002/2016jd025094
dc.identifier.citedreferenceSchuur, E. A., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 â 179. https://doi.org/10.1038/nature14338
dc.identifier.citedreferenceShi, M., Fisher, J. B., Brzostek, E. R., & Phillips, R. P. ( 2016 ). Carbon cost of plant nitrogen acquisition: Global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Global Change Biology, 22 ( 3 ), 1299 â 1314. https://doi.org/10.1111/gcb.13131
dc.identifier.citedreferenceSimard, M., Pinto, N., Fisher, J. B., & Baccini, A. ( 2011 ). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116 ( G4 ). https://doi.org/10.1029/2011jg001708
dc.identifier.citedreferenceSlater, A. G., Lawrence, D. M., & Koven, C. D. ( 2017 ). Processâ level model evaluation: A snow and heat transfer metric. The Cryosphere, 11 ( 2 ), 989 â 996. https://doi.org/10.5194/tcâ 11â 989â 2017
dc.identifier.citedreferenceStorck, P., Lettenmaier, D. P., & Bolton, S. M. ( 2002 ). Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States: FOREST CANOPY EFFECTS ON GROUND SNOW PACK DYNAMICS. Water Resources Research, 38 ( 11 ), 5â 1 â 5â 16. https://doi.org/10.1029/2002wr001281
dc.identifier.citedreferenceSturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. ( 2010 ). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11 ( 6 ), 1380 â 1394. https://doi.org/10.1175/2010jhm1202.1
dc.identifier.citedreferenceSubin, Z. M., Riley, W. J., & Mironov, D. ( 2012 ). An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, 4 ( 1 ). https://doi.org/10.1029/2011ms000072
dc.identifier.citedreferenceSwenson, S., & Lawrence, D. ( 2014 ). Assessing a dry surface layerâ based soil resistance parameterization for the Community Land Model using GRACE and FLUXNETâ MTE data. Journal of Geophysical Research. Atmospheres, 119 ( 17 ), 10,299 â 10,312. https://doi.org/10.1002/2014JD022314
dc.identifier.citedreferenceSwenson, S., & Lawrence, D. ( 2015 ). A GRACEâ based assessment of interannual groundwater dynamics in the Community Land Model. Water Resources Research, 51 ( 11 ), 8817 â 8833. https://doi.org/10.1002/2015WR017582
dc.identifier.citedreferenceSwenson, S. C., Burns, S. P., & Lawrence, D. M. ( 2019 ). The impact of biomass heat storage on the canopy energy balance and atmospheric stability in the Community Land Model. Journal of Advances in Modeling Earth Systems, 11 ( 1 ), 83 â 98. https://doi.org/10.1029/2018ms001476
dc.identifier.citedreferenceSwenson, S. C., & Lawrence, D. ( 2012 ). A new fractional snowâ covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research, 117 ( D21 ). https://doi.org/10.1029/2012JD018178
dc.identifier.citedreferenceSwenson, S. C., Lawrence, D. M., & Lee, H. ( 2012 ). Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. Journal of Advances in Modeling Earth Systems, 4 ( 3 ). https://doi.org/10.1029/2012ms000165
dc.identifier.citedreferenceTerrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., & Prentice, I. C. ( 2018 ). Ecosystem responses to elevated CO 2 governed by plantâ soil interactions and the cost of nitrogen acquisition. New Phytologist, 217 ( 2 ), 507 â 522. https://doi.org/10.1111/nph.14872
dc.identifier.citedreferenceTeuling, A. J., Seneviratne, S. I., Williams, C., & Troch, P. A. ( 2006 ). Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 33 ( 23 ). https://doi.org/10.1029/2006gl028178
dc.identifier.citedreferenceThiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., & Seneviratne, S. I. ( 2017 ). Presentâ day irrigation mitigates heat extremes. Journal of Geophysical Research, 122 ( 3 ), 1403 â 1422. https://doi.org/10.1002/2016jd025740
dc.identifier.citedreferenceThomas, R. Q., Bonan, G. B., & Goodale, C. L. ( 2013 ). Insights into mechanisms governing forest carbon response to nitrogen deposition: a modelâ data comparison using observed responses to nitrogen addition. Biogeosciences, 10 ( 6 ), 3869 â 3887. https://doi.org/10.5194/bgâ 10â 3869â 2013
dc.identifier.citedreferenceThomas, R. Q., Zaehle, S., Templer, P. H., & Goodale, C. L. ( 2013 ). Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations. Global Change Biology, 19 ( 10 ), 2986 â 2998. https://doi.org/10.1111/gcb.12281
dc.identifier.citedreferenceThonicke, K., Spessa, A., Prentice, I., Harrison, S. P., Dong, L., & Carmonaâ Moreno, C. ( 2010 ). The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a processâ based model. Biogeosciences, 7 ( 6 ), 1991 â 2011. https://doi.org/10.5194/bgâ 7â 1991â 2010
dc.identifier.citedreferenceThornton, P. E., Lamarque, J.â F., Rosenbloom, N. A., & Mahowald, N. M. ( 2007 ). Influence of carbonâ nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21 ( 4 ). https://doi.org/10.1029/2006GB002868
dc.identifier.citedreferenceThornton, P. E., & Rosenbloom, N. A. ( 2005 ). Ecosystem model spinâ up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological Modelling, 189 ( 1â 2 ), 25 â 48. https://doi.org/10.1016/j.ecolmodel.2005.04.008
dc.identifier.citedreferenceTricht, K. V., Lhermitte, S., Gorodetskaya, I. V., & van Lipzig, N. P. ( 2016 ). Improving satelliteâ retrieved surface radiative fluxes in polar regions using a smart sampling approach. The Cryosphere, 10 ( 5 ), 2379 â 2397. https://doi.org/10.5194/tcâ 10â 2379â 2016
dc.identifier.citedreferenceTrugman, A. T., Medvigy, D., Mankin, J. S., & Anderegg, W. R. L. ( 2018 ). Soil moisture stress as a major driver of carbon cycle uncertainty. Geophysical Research Letters, 45 ( 13 ), 6495 â 6503. https://doi.org/10.1029/2018gl078131
dc.identifier.citedreferenceVal Martin, M., Kahn, R., & Tosca, M. ( 2018 ). A global analysis of wildfire smoke injection heights derived from spaceâ based multiâ angle imaging. Remote Sensing, 10 ( 10 ), 1609. https://doi.org/10.3390/rs10101609
dc.identifier.citedreferenceVal Martin, M., Logan, J. A., Kahn, R. A., Leung, F.â Y., Nelson, D. L., & Diner, D. J. ( 2010 ). Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmospheric Chemistry and Physics, 10 ( 4 ), 1491 â 1510. https://doi.org/10.5194/acpâ 10â 1491â 2010
dc.identifier.citedreferenceVan den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., & Sheffield, J. ( 2016 ). LS3MIP (v1. 0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Projectâ aims, setup and expected outcome. Geoscientific Model Development, 9 ( 8 ), 2809 â 2832. https://doi.org/10.5194/gmdâ 9â 2809â 2016
dc.identifier.citedreferencevan Kampenhout, L., Lenaerts, J., Lipscomb, W. H., Sacks, W. J., Lawrence, D. M., Slater, A. G., & van den Broeke, M. R. ( 2017 ). Improving the representation of polar snow and firn in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 9 ( 7 ), 2583 â 2600. https://doi.org/10.1002/2017MS000988
dc.identifier.citedreferenceVicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., Heinemeyer, A., Högberg, P., Kutsch, W. L., Law, B. E., Malhi, Y., Papale, D., Piao, S. L., Reichstein, M., Schulze, E. D., & Janssens, I. A. ( 2012 ). Fertile forests produce biomass more efficiently: Forests’ biomass production efficiency. Ecology Letters, 15 ( 6 ), 520 â 526. https://doi.org/10.1111/j.1461â 0248.2012.01775.x
dc.identifier.citedreferenceVitousek, P. M., Menge, D. N., Reed, S. C., & Cleveland, C. C. ( 2013 ). Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368 ( 1621 ), 20130119. https://doi.org/10.1098/rstb.2013.0119
dc.identifier.citedreferenceVogel, R. M., & Kroll, C. N. ( 1996 ). Estimation of baseflow recession constants. Water Resources Management, 10 ( 4 ), 303 â 320. https://doi.org/Doi, https://doi.org/10.1007/Bf00508898
dc.identifier.citedreferenceWalker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Asao, S., Dietze, M., Hickler, T., Huntingford, C., Iversen, C. M., Jain, A., Lomas, M., Luo, Y., McCarthy, H., Parton, W. J., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.â P., Warlind, D., Weng, E., Warren, J. M., Woodward, F. I., Oren, R., & Norby, R. J. ( 2014 ). Comprehensive ecosystem modelâ data synthesis using multiple data sets at two temperate forest freeâ air CO 2 enrichment experiments: Model performance at ambient CO 2 concentration: FACE MODELâ DATA SYNTHESIS. Journal of Geophysical Research, 119 ( 5 ), 937 â 964. https://doi.org/10.1002/2013JG002553
dc.identifier.citedreferenceWalker, A. P., Ye, M., Lu, D., De Kauwe, M. G., Gu, L. H., Medlyn, B. E., Rogers, A., & Serbin, S. P. ( 2018 ). The multiâ assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources. Geoscientific Model Development, 11 ( 8 ), 3159 â 3185. https://doi.org/10.5194/gmdâ 11â 3159â 2018
dc.identifier.citedreferenceWang, A. H., & Zeng, X. ( 2009 ). Improving the treatment of the vertical snow burial fraction over short vegetation in the NCAR CLM3. Advances in Atmospheric Sciences, 26 ( 5 ), 877 â 886. https://doi.org/10.1007/s00376â 009â 8098â 3
dc.identifier.citedreferenceWeedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. ( 2014 ). The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERAâ Interim reanalysis data. Water Resources Research, 50 ( 9 ), 7505 â 7514. https://doi.org/10.1002/2014WR015638
dc.identifier.citedreferenceWeedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Osterle, H., Adam, J. C., Bellouin, N., Boucher, O., & Best, M. ( 2011 ). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12 ( 5 ), 823 â 848. https://doi.org/10.1175/2011jhm1369.1
dc.identifier.citedreferenceWieder, W. R., Cleveland, C. C., Lawrence, D. M., & Bonan, G. B. ( 2015 ). Effects of model structural uncertainty on carbon cycle projections: Biological nitrogen fixation as a case study. Environmental Research Letters, 10 ( 4 ), 044016. https://doi.org/10.1088/1748â 9326/10/4/044016
dc.identifier.citedreferenceWieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J., Goodale, C. L., Grandy, A. S., Koven, C. D., Lombardozzi, D. L., Oleson, K. W., & Thomas, R. Q. ( 2019 ). Beyond static benchmarking: Using experimental manipulations to evaluate land model assumptions. Global Biogeochemical Cycles, 33 ( 10 ), 1289 â 1309. https://doi.org/doi.org/10.1029/2018GB006141
dc.identifier.citedreferenceXu, C., Fisher, R., Wullschleger, S. D., Wilson, C. J., Cai, M., & McDowell, N. G. ( 2012 ). Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE, 7 ( 5 ), e37914. https://doi.org/10.1371/journal.pone.0037914
dc.identifier.citedreferenceYoshimura, K., & Kanamitsu, M. ( 2008 ). Dynamical global downscaling of global reanalysis. Monthly Weather Review, 136 ( 8 ), 2983 â 2998. https://doi.org/10.1175/2008mwr2281.1
dc.identifier.citedreferenceZaehle, S., & Friend, A. D. ( 2010 ). Carbon and nitrogen cycle dynamics in the Oâ CN land surface model: 1. Model description, siteâ scale evaluation, and sensitivity to parameter estimates: SITEâ SCALE EVALUATION OF A Câ N MODEL. Global Biogeochemical Cycles, 24 ( 1 ). https://doi.org/10.1029/2009gb003521
dc.identifier.citedreferenceZaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.â P., Elâ Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Galletâ Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., & Norby, R. J. ( 2014 ). Evaluation of 11 terrestrial carbonâ nitrogen cycle models against observations from two temperate Freeâ Air CO 2 Enrichment studies. New Phytologist, 202 ( 3 ), 803 â 822. https://doi.org/10.1111/nph.12697
dc.identifier.citedreferenceZeng, X. B. ( 2001 ). Global vegetation root distribution for land modeling. Journal of Hydrometeorology, 2 ( 5 ), 525 â 530. https://doi.org/10.1175/1525â 7541(2001)002<0525:Gvrdfl>2.0.Co;2
dc.identifier.citedreferenceZeng, X. B., & Decker, M. ( 2009 ). Improving the numerical solution of soil moistureâ based Richards equation for land models with a deep or shallow water table. Journal of Hydrometeorology, 10 ( 1 ), 308 â 319. https://doi.org/10.1175/2008JHM1011.1
dc.identifier.citedreferenceZhang, Y. F., Hoar, T. J., Yang, Z. L., Anderson, J. L., Toure, A. M., & Rodell, M. ( 2014 ). Assimilation of MODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4. Journal of Geophysical Research: Atmospheres, 119, 7091 â 7103. https://doi.org/10.1002/2013jd021329
dc.identifier.citedreferenceZhao, L., & Yang, Z. L. ( 2018 ). Multiâ sensor land data assimilation: Toward a robust global soil moisture and snow estimation. Remote Sensing of Environment, 216, 13 â 27. https://doi.org/10.1016/j.rse.2018.06.033
dc.identifier.citedreferenceZhao, L., Yang, Z. L., & Hoar, T. J. ( 2016 ). Global soil moisture estimation by assimilating AMSRâ E brightness temperatures in a coupled CLM4â RTMâ DART system. Journal of Hydrometeorology, 17 ( 9 ), 2431 â 2454. https://doi.org/10.1175/Jhmâ Dâ 15â 0218.1
dc.identifier.citedreferenceZhao, M. S., Heinsch, F. A., Nemani, R. R., & Running, S. W. ( 2005 ). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95 ( 2 ), 164 â 176. https://doi.org/10.1016/j.rse.2004.12.011
dc.identifier.citedreferenceZhu, Q., Riley, W. J., Tang, J., & Koven, C. D. ( 2016 ). Multiple soil nutrient competition between plants, microbes, and mineral surfaces: Model development, parameterization, and example applications in several tropical forests. Biogeosciences, 13 ( 1 ), 341 â 363. https://doi.org/10.5194/bgâ 13â 341â 2016
dc.identifier.citedreferenceAdole, T., Dash, J., & Atkinson, P. M. ( 2018 ). Largeâ scale prerain vegetation greenâ up across Africa. Global Change Biology, 24 ( 9 ), 4054 â 4068. https://doi.org/10.1111/gcb.14310
dc.identifier.citedreferenceAinsworth, E. A., & Long, S. P. ( 2004 ). What have we learned from 15 years of freeâ air CO2 enrichment (FACE)? A metaâ analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytologist, 165 ( 2 ), 351 â 372. https://doi.org/10.1111/j.1469â 8137.2004.01224.x
dc.identifier.citedreferenceAkagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. ( 2011 ). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11 ( 9 ), 4039 â 4072. https://doi.org/10.5194/acpâ 11â 4039â 2011
dc.identifier.citedreferenceAlemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., & Gentine, P. ( 2017 ). Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically based estimate of global surface turbulent fluxes and gross primary productivity using solarâ induced fluorescence. Biogeosciences, 14 ( 18 ), 4101 â 4124. https://doi.org/10.5194/bgâ 14â 4101â 2017
dc.identifier.citedreferenceAli, A. A., Xu, C., Rogers, A., Fisher, R. A., Wullschleger, S. D., Massoud, E. C., Vrugt, J. A., Muss, J. D., McDowell, N. G., Fisher, J. B., Reich, P. B., & Wilson, C. J. ( 2016 ). A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model Development, 9 ( 2 ), 587 â 606. https://doi.org/10.5194/gmdâ 9â 587â 2016
dc.identifier.citedreferenceAnderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., & Zenes, N. ( 2018 ). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561 ( 7724 ), 538 â 541. https://doi.org/10.1038/s41586â 018â 0539â 7
dc.identifier.citedreferenceAnderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. ( 2009 ). The Data Assimilation Research Testbed: A community facility. Bulletin of the American Meteorological Society, 90 ( 9 ), 1283 â 1296. https://doi.org/10.1175/2009bams2618.1
dc.identifier.citedreferenceAndreae, M. O., & Merlet, P. ( 2001 ). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15 ( 4 ), 955 â 966. https://doi.org/10.1029/2000gb001382
dc.identifier.citedreferenceChen, L., Dirmeyer, P. A., Guo, Z. C., & Schultz, N. M. ( 2018 ). Pairing FLUXNET sites to validate model representations of landâ use/landâ cover change. Hydrology and Earth System Sciences, 22 ( 1 ), 111 â 125. https://doi.org/10.5194/hessâ 22â 111â 2018
dc.identifier.citedreferenceCheng, L., Zhang, L., Wang, Y. P., Canadell, J. G., Chiew, F. H. S., Beringer, J., Li, L., Miralles, D. G., Piao, S., & Zhang, Y. ( 2017 ). Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 8 ( 1 ), 110. https://doi.org/10.1038/s41467â 017â 00114â 5
dc.identifier.citedreferenceAtkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P., Bonal, D., Bönisch, G., Bradford, M. G., Cernusak, L. A., Cosio, E. G., Creek, D., Crous, K. Y., Domingues, T. F., Dukes, J. S., Egerton, J. J. G., Evans, J. R., Farquhar, G. D., Fyllas, N. M., Gauthier, P. P. G., Gloor, E., Gimeno, T. E., Griffin, K. L., Guerrieri, R., Heskel, M. A., Huntingford, C., Ishida, F. Y., Kattge, J., Lambers, H., Liddell, M. J., Lloyd, J., Lusk, C. H., Martin, R. E., Maksimov, A. P., Maximov, T. C., Malhi, Y., Medlyn, B. E., Meir, P., Mercado, L. M., Mirotchnick, N., Ng, D., Niinemets, à ., O’Sullivan, O. S., Phillips, O. L., Poorter, L., Poot, P., Prentice, I. C., Salinas, N., Rowland, L. M., Ryan, M. G., Sitch, S., Slot, M., Smith, N. G., Turnbull, M. H., VanderWel, M. C., Valladares, F., Veneklaas, E. J., Weerasinghe, L. K., Wirth, C., Wright, I. J., Wythers, K. R., Xiang, J., Xiang, S., & Zaragozaâ Castells, J. ( 2015 ). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. The New Phytologist, 206 ( 2 ), 614 â 636. https://doi.org/10.1111/nph.13253
dc.identifier.citedreferenceAvitabile, V., Herold, M., Heuvelink, G. B., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopezâ Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., & Willcock, S. ( 2016 ). An integrated panâ tropical biomass map using multiple reference datasets. Global Change Biology, 22 ( 4 ), 1406 â 1420. https://doi.org/10.1111/gcb.13139
dc.identifier.citedreferenceBadger, A. M., & Dirmeyer, P. A. ( 2015 ). Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrology and Earth System Sciences, 19 ( 11 ), 4547 â 4557. https://doi.org/10.5194/hessâ 19â 4547â 2015
dc.identifier.citedreferenceBagley, J. E., Miller, J., & Bernacchi, C. J. ( 2015 ). Biophysical impacts of climateâ smart agriculture in the Midwest United States. Plant, Cell & Environment, 38 ( 9 ), 1913 â 1930. https://doi.org/10.1111/pce.12485
dc.identifier.citedreferenceBonan, G. B., & Doney, S. C. ( 2018 ). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359 ( 6375 ), eaam8328. https://doi.org/10.1126/science.aam8328
dc.identifier.citedreferenceBonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., & Swenson, S. C. ( 2011 ). Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research, Biogeosciences, 116 ( G2 ). https://doi.org/10.1029/2010jg001593
dc.identifier.citedreferenceBonan, G. B., & Levis, S. ( 2010 ). Quantifying carbonâ nitrogen feedbacks in the Community Land Model (CLM4). Geophysical Research Letters, 37 ( 7 ). https://doi.org/10.1029/2010gl042430
dc.identifier.citedreferenceBonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., & Reichstein, M. ( 2012 ). Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. Journal of Geophysical Research, Biogeosciences, 117 ( G2 ). https://doi.org/10.1029/2011jg001913
dc.identifier.citedreferenceBonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y. Q., & Burakowski, E. A. ( 2018 ). Modeling canopyâ induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLMâ ml v0). Geoscientific Model Development, 11 ( 4 ), 1467 â 1496. https://doi.org/10.5194/gmdâ 11â 1467â 2018
dc.identifier.citedreferenceBonan, G. B., Wieder, W., Lombardozzi, D. L., Lawrence, D. M., Fisher, R. A., & Oleson, K. W. ( 2019 ). Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850â 2014). Global Biogeochemical Cycles, 46 ( 14 ), 8329 â 8337. https://doi.org/doi.org/10.1029/2019GL083978
dc.identifier.citedreferenceBrunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G. Y., Troch, P. A., & Zeng, X. ( 2016 ). Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4.5). Journal of Climate, 29 ( 9 ), 3441 â 3461. https://doi.org/10.1175/Jcliâ Dâ 15â 0307.1
dc.identifier.citedreferenceBrzostek, E. R., Fisher, J. B., & Phillips, R. P. ( 2014 ). Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal tradeâ offs and multipath resistance uptake improve predictions of retranslocation. Journal of Geophysical Research, Biogeosciences, 119 ( 8 ), 1684 â 1697. https://doi.org/10.1002/2014JG002660
dc.identifier.citedreferenceBurns, S. P., Swenson, S. C., Wieder, W. R., Lawrence, D. M., Bonan, G. B., Knowles, J. F., & Blanken, P. D. ( 2018 ). A comparison of the diel cycle of modeled and measured latent heat flux during the warm season in a Colorado subalpine forest. Journal of Advances in Modeling Earth Systems, 10 ( 3 ), 617 â 651. https://doi.org/10.1002/2017ms001248
dc.identifier.citedreferenceBuzan, J. R., Oleson, K., & Huber, M. ( 2015 ). Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscientific Model Development, 8 ( 2 ), 151 â 170. https://doi.org/10.5194/gmdâ 8â 151â 2015
dc.identifier.citedreferenceCampbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., Belviso, S., Bopp, L., & Laine, M. ( 2017 ). Large historical growth in global terrestrial gross primary production. Nature, 544 ( 7648 ), 84 â 87. https://doi.org/10.1038/nature22030
dc.identifier.citedreferenceCampioli, M., Vicca, S., Luyssaert, S., Bilcke, J., Ceschia, E., Chapin Iii, F., Ciais, P., Fernándezâ Martínez, M., Malhi, Y., Obersteiner, M., Olefeldt, D., Papale, D., Piao, S. L., Peñuelas, J., Sullivan, P. F., Wang, X., Zenone, T., & Janssens, I. A. ( 2015 ). Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience, 8 ( 11 ), 843 â 846. https://doi.org/10.1038/ngeo2553
dc.identifier.citedreferenceChoat, B., Drayton, W. M., Brodersen, C., Matthews, M. A., Shackel, K. A., Wada, H., & McElrone, A. J. ( 2010 ). Measurement of vulnerability to water stressâ induced cavitation in grapevine: A comparison of four techniques applied to a longâ vesseled species. Plant, Cell & Environment, 33 ( 9 ), 1502 â 1512. https://doi.org/10.1111/j.1365â 3040.2010.02160.x
dc.identifier.citedreferenceChristoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., & Meir, P. ( 2016 ). Linking hydraulic traits to tropical forest function in a sizeâ structured and traitâ driven model (TFS v.1â Hydro). Geoscientific Model Development, 9 ( 11 ), 4227 â 4255. https://doi.org/10.5194/gmdâ 9â 4227â 2016
dc.identifier.citedreferenceClark, M. P., & Kavetski, D. ( 2010 ). Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes. Water Resources Research, 46 ( 10 ). https://doi.org/10.1029/2009wr008894
dc.identifier.citedreferenceCleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C., Elseroad, A., & Wasson, M. F. ( 1999 ). Global patterns of terrestrial biological nitrogen (N 2 ) fixation in natural ecosystems. Global Biogeochemical Cycles, 13 ( 2 ), 623 â 645. https://doi.org/10.1029/1999GB900014
dc.identifier.citedreferenceCollier, N., Hoffman, F. M., Lawrence, D. M., Keppelâ Aleks, G., Koven, C. D., Riley, W. J., Mu, M., & Randerson, J. T. ( 2018 ). The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10 ( 11 ), 2731 â 2754. https://doi.org/10.1029/2018ms001354
dc.identifier.citedreferenceCompo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, à ., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., & Worley, S. J. ( 2011 ). The Twentieth Century Reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137 ( 654 ), 1 â 28. https://doi.org/10.1002/qj.776
dc.identifier.citedreferenceCox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, C. M. ( 2013 ). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494 ( 7437 ), 341 â 344. https://doi.org/10.1038/nature11882
dc.identifier.citedreferenceDahlin, K., Fisher, R., & Lawrence, P. ( 2015 ). Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences, 12 ( 16 ), 5061 â 5074. https://doi.org/10.5194/bgâ 12â 5061â 2015
dc.identifier.citedreferenceDahlin, K. M., Del Ponte, D., Setlock, E., & Nagelkirk, R. ( 2017 ). Global patterns of drought deciduous phenology in semiâ arid and savannaâ type ecosystems. Ecography, 40 ( 2 ), 314 â 323. https://doi.org/10.1111/ecog.02443
dc.identifier.citedreferenceDai, A., Qian, T., Trenberth, K. E., & Milliman, J. D. ( 2009 ). Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22 ( 10 ), 2773 â 2792. https://doi.org/10.1175/2008JCLI2592.1
dc.identifier.citedreferenceDavin, E. L., Seneviratne, S. I., Ciais, P., Olioso, A., & Wang, T. ( 2014 ). Preferential cooling of hot extremes from cropland albedo management. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 27 ), 9757 â 9761. https://doi.org/10.1073/pnas.1317323111
dc.identifier.citedreferenceDe Kauwe, M. G., Kala, J., Lin, Y.â S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y.â P., & Miralles, D. G. ( 2015 ). A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geoscientific Model Development, 8 ( 2 ), 431 â 452. https://doi.org/10.5194/gmdâ 8â 431â 2015
dc.identifier.citedreferenceDe Rooij, G. H. ( 2010 ). Comments on â Improving the numerical simulation of soil moistureâ based Richards equation for land models with a deep or shallow water tableâ . Journal of Hydrometeorology, 11 ( 4 ), 1044 â 1050. https://doi.org/10.1175/2010JHM1189.1
dc.identifier.citedreferenceDefries, R. S., Hansen, M. C., Townshend, J. R., Janetos, A., & Loveland, T. R. ( 2000 ). A new global 1â km dataset of percentage tree cover derived from remote sensing. Global Change Biology, 6 ( 2 ), 247 â 254. https://doi.org/10.1046/j.1365â 2486.2000.00296.x
dc.identifier.citedreferenceDeLucia, E. H., Drake, J. E., Thomas, R. B., & GONZALEZâ MELER, M. ( 2007 ). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13 ( 6 ), 1157 â 1167. https://doi.org/10.1111/j.1365â 2486.2007.01365.x
dc.identifier.citedreferenceDirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford, T. W., Santanello, J. A. Jr., Bosilovich, M. G., Ek, M. B., Koster, R. D., Balsamo, G., & Lawrence, D. M. ( 2016 ). Confronting weather and climate models with observational data from soil moisture networks over the United States. Journal of Hydrometeorology, 17 ( 4 ), 1049 â 1067. https://doi.org/10.1175/JHMâ Dâ 15â 0196.1
dc.identifier.citedreferenceDoughty, C. E., Goldsmith, G. R., Raab, N., Girardin, C. A. J., Farfanâ Amezquita, F., Huaracaâ Huasco, W., Silvaâ Espejo, J. E., Araujoâ Murakami, A., Da Costa, A. C. L., Rocha, W., Galbraith, D., Meir, P., Metcalfe, D. B., & Malhi, Y. ( 2018 ). What controls variation in carbon use efficiency among Amazonian tropical forests? Biotropica, 50 ( 1 ), 16 â 25. https://doi.org/10.1111/btp.12504
dc.identifier.citedreferenceDrewniak, B., Song, J., Prell, J., Kotamarthi, V. R., & Jacob, R. ( 2013 ). Modeling agriculture in the Community Land Model. Geoscientific Model Development, 6 ( 2 ), 495 â 515. https://doi.org/10.5194/gmdâ 6â 495â 2013
dc.identifier.citedreferenceFao/Iiasa/Isric/Isscas/Jrc. ( 2012 ). Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
dc.identifier.citedreferenceFisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C., & Tan, S. Y. ( 2010 ). Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles, 24 ( 1 ). https://doi.org/10.1029/2009gb003621
dc.identifier.citedreferenceFisher, R., Wieder, W., Sanderson, B., Koven, C., Oleson, K., Xu, C., Fisher, J. B., Shi, M., Walker, A. P., & Lawrence, D. M. ( 2019 ). Parameteric controls on responses to biogeochemical forcing in the CLM5. Journal of Advances in Modeling Earth Systems, 11 ( 9 ), 2879 â 2895. https://doi.org/10.1029/2019MS001609
dc.identifier.citedreferenceFisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Mullerâ Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., & Moorcroft, P. R. ( 2018 ). Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 24 ( 1 ), 35 â 54. https://doi.org/10.1111/gcb.13910
dc.identifier.citedreferenceFisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., & Bonan, G. ( 2015 ). Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 8 ( 11 ), 3593 â 3619. https://doi.org/10.5194/gmdâ 8â 3593â 2015
dc.identifier.citedreferenceFlanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. ( 2007 ). Presentâ day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112 ( D11 ). https://doi.org/D11202, https://doi.org/10.1029/2006JD008003
dc.identifier.citedreferenceFoken, T. ( 2006 ). 50 years of the Moninâ Obukhov similarity theory. Boundaryâ Layer Meteorology, 119 ( 3 ), 431 â 447. https://doi.org/10.1007/s10546â 006â 9048â 6
dc.identifier.citedreferenceFord, B., Val Martin, M., Zelasky, S., Fischer, E., Anenberg, S., Heald, C., & Pierce, J. ( 2018 ). Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. GeoHealth, 2 ( 8 ), 229 â 247. https://doi.org/10.1029/2018GH000144
dc.identifier.citedreferenceFowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbachâ Bahl, K., Dentener, F., Stevenson, D., Amann, M., & Voss, M. ( 2013 ). The global nitrogen cycle in the twentyâ first century. Philosophical Transactions of the Royal Society, B: Biological Sciences, 368 ( 1621 ), 20130164â 20130164. https://doi.org/10.1098/rstb.2013.0164
dc.identifier.citedreferenceFox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K., Litvak, M. E., MacBean, N., Schimel, D. S., & Moore, D. J. P. ( 2018 ). Evaluation of a data assimilation system for land surface models using CLM4.5. Journal of Advances in Modeling Earth Systems, 10 ( 10 ), 2471 â 2494. https://doi.org/10.1029/2018ms001362
dc.identifier.citedreferenceFrank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlström, A., Ciais, P., Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N., Andreuâ Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., Dâ Alessandro, C. M., Daux, V., Filot, M., Grabner, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Jungner, H., Kalelaâ Brundin, M., Krapiec, M., Leuenberger, M., Loader, N. J., Marah, H., Massonâ Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells, O., Pukiene, R., Reynoldsâ Henne, C. E., Rinne, K. T., Saracino, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M., Szychowskaâ Krapiec, E., Todaro, L., Waterhouse, J. S., & Weigl, M. ( 2015 ). Waterâ use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change, 5 ( 6 ), 579 â 583. https://doi.org/10.1038/nclimate2614
dc.identifier.citedreferenceFranks, P. J., Berry, J. A., Lombardozzi, D. L., & Bonan, G. B. ( 2017 ). Stomatal function across temporal and spatial scales: Deepâ time trends, landâ atmosphere coupling and global models. Plant Physiology, 174 ( 2 ), 583 â 602. https://doi.org/10.1104/pp.17.00287
dc.identifier.citedreferenceFranks, P. J., Bonan, G. B., Berry, J. A., Lombardozzi, D. L., Holbrook, N. M., Herold, N., & Oleson, K. W. ( 2018 ). Comparing optimal and empirical stomatal conductance models for application in Earth system models. Global Change Biology, 24 ( 12 ), 5708 â 5723. https://doi.org/10.1111/gcb.14445
dc.identifier.citedreferenceGent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., & Zhang, M. ( 2011 ). The Community Climate System Model version 4. J. Climate. 24 ( 19 ), 4973 â 4991. https://doi.org/10.1175/2011JCLI4083.1
dc.identifier.citedreferenceGhimire, B., Riley, W. J., Koven, C. D., Mu, M. Q., & Randerson, J. T. ( 2016 ). Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. Journal of Advances in Modeling Earth Systems, 8 ( 2 ), 598 â 613. https://doi.org/10.1002/2015ms000538
dc.identifier.citedreferenceGiardina, C. P., Coleman, M. D., Hancock, J. E., King, J. S., Lilleskov, E. A., Loya, W. M., Pregitzer, K. S., Ryan, M. G., & Trettin, C. C. ( 2005 ). The response of belowground carbon allocation in forests to global change. In Tree species effects on soils: Implications for global change, (pp. 119 â 154 ). Springer. https://doi.org/10.1007/1â 4020â 3447â 4_7
dc.identifier.citedreferenceGiardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., & Gentine, P. ( 2018 ). Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 11 ( 6 ), 405 â 409. https://doi.org/10.1038/s41561â 018â 0133â 5
dc.identifier.citedreferenceGoldewijk, K. K., Beusen, A., Doelman, J., & Stehfest, E. ( 2017 ). Anthropogenic land use estimates for the Holoceneâ HYDE 3.2. Earth System Science Data, 9 ( 2 ), 927 â 953. https://doi.org/10.5194/essdâ 9â 927â 2017
dc.identifier.citedreferenceGuenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. ( 2012 ). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5 ( 6 ), 1471 â 1492. https://doi.org/10.5194/gmdâ 5â 1471â 2012
dc.identifier.citedreferenceHandorf, D., Foken, T., & Kottmeier, C. ( 1999 ). The stable atmospheric boundary layer over an Antarctic ice sheet. Boundaryâ Layer Meteorology, 91 ( 2 ), 165 â 189. https://doi.org/10.1023/A:1001889423449
dc.identifier.citedreferenceHerridge, D. F., Peoples, M. B., & Boddey, R. M. ( 2008 ). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311 ( 1â 2 ), 1 â 18. https://doi.org/10.1007/s11104â 008â 9668â 3
dc.identifier.citedreferenceHoffman, F. M., Randerson, J. T., Arora, V. K., Bao, Q., Cadule, P., Ji, D., Jones, C. D., Kawamiya, M., Khatiwala, S., Lindsay, K., Obata, A., Shevliakova, E., Six, K. D., Tjiputra, J. F., Volodin, E. M., & Wu, T. ( 2014 ). Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. Journal of Geophysical Research, Biogeosciences, 119 ( 2 ), 141 â 162. https://doi.org/10.1002/2013jg002381
dc.identifier.citedreferenceHoulton, B. Z., Marklein, A. R., & Bai, E. ( 2015 ). Representation of nitrogen in climate change forecasts. Nature Climate Change, 5 ( 5 ), 398 â 401. https://doi.org/10.1038/nclimate2538
dc.identifier.citedreferenceHoulton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. ( 2008 ). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454 ( 7202 ), 327 â 330. https://doi.org/10.1038/nature07028
dc.identifier.citedreferenceHuang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Shi, X., Zeng, Z., & Wang, Y. ( 2015 ). Change in terrestrial ecosystem waterâ use efficiency over the last three decades. Global Change Biology, 21 ( 6 ), 2366 â 2378. https://doi.org/10.1111/gcb.12873
dc.identifier.citedreferenceHugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., & Swanson, D. K. ( 2013 ). The Northern Circumpolar Soil Carbon Database: Spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5 ( 1 ), 3 â 13. https://doi.org/10.5194/essdâ 5â 3â 2013
dc.identifier.citedreferenceHungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., & Drake, B. G. ( 2004 ). CO2 elicits longâ term decline in nitrogen fixation. Science, 304 ( 5675 ), 1291. https://doi.org/10.1126/science.1095549
dc.identifier.citedreferenceHuntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., & Zhu, Q. ( 2013 ). The North American Carbon Program Multiâ Scale Synthesis and Terrestrial Model Intercomparison Projectâ Part 1: Overview and experimental design. Geoscientific Model Development, 6 ( 6 ), 2121 â 2133. https://doi.org/10.5194/gmdâ 6â 2121â 2013
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., & Marshall, S. ( 2013 ). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 â 1360. https://doi.org/10.1175/Bamsâ Dâ 12â 00121.1
dc.identifier.citedreferenceJackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. ( 1996 ). A global analysis of root distributions for terrestrial biomes. Oecologia, 108 ( 3 ), 389 â 411. https://doi.org/10.1007/BF00333714
dc.identifier.citedreferenceJanssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., & Law, B. E. ( 2010 ). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3 ( 5 ), 315 â 322. https://doi.org/10.1038/ngeo844
dc.identifier.citedreferenceJasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. ( 2013 ). Terrestrial water fluxes dominated by transpiration. Nature, 496 ( 7445 ), 347 â 350. https://doi.org/10.1038/nature11983
dc.identifier.citedreferenceJones, P., & Harris, I. ( 2013 ). CRU TS3. 21: Climatic Research Unit (CRU) Timeâ Series (TS) version 3.21 of high resolution gridded data of monthâ byâ month variation in climate (Jan. 1901â Dec. 2012). NCAS British Atmospheric Data Centre. https://doi.org/10.1002/joc.3711
dc.identifier.citedreferenceJung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., & Williams, C. ( 2011 ). Global patterns of landâ atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 116. https://doi.org/10.1029/2010jg001566
dc.identifier.citedreferenceKalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., & Joseph, D. ( 1996 ). The NCEPâ NCAR 40â year reanalysis project. Bulletin of the American Meteorological Society, 77 ( 3 ), 437 â 471. https://doi.org/10.1175/1520â 0477(1996)077<0437:TNYRP>2.0.CO;2
dc.identifier.citedreferenceKattge, J., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Bonisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., van Bodegom, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavenderâ Bares, J., Chambers, J. Q., Chapin, F. S. III, Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernándezâ Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, à ., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgadoâ Negret, B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J.â F., Swaine, E., Swenson, N., Thompson, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, J., Yguel, B., Zaehle, S., Zanne, A. E., & Wirth, C. ( 2011 ). TRYâ A global database of plant traits. Global Change Biology, 17 ( 9 ), 2905 â 2935. https://doi.org/10.1111/j.1365â 2486.2011.02451.x
dc.identifier.citedreferenceKattge, J., Knorr, W., Raddatz, T., & Wirth, C. ( 2009 ). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for globalâ scale terrestrial biosphere models. Global Change Biology, 15 ( 4 ), 976 â 991. https://doi.org/10.1111/j.1365â 2486.2008.01744.x
dc.identifier.citedreferenceKavetski, D., Binning, P., & Sloan, S. W. ( 2001 ). Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Advances in Water Resources, 24 ( 6 ), 595 â 605. https://doi.org/10.1016/S0309â 1708(00)00076â 2
dc.identifier.citedreferenceKeenan, T., Garcia, R., Friend, A. D., Zaehle, S., Gracia, C., & Sabate, S. ( 2009 ). Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences, 6 ( 8 ), 1423 â 1444. https://doi.org/10.5194/bgâ 6â 1423â 2009
dc.identifier.citedreferenceKeenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., & Richardson, A. D. ( 2013 ). Increase in forest waterâ use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499 ( 7458 ), 324 â 327. https://doi.org/10.1038/nature12291
dc.identifier.citedreferenceKennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., da Costa, A. C. L., & Gentine, P. ( 2019 ). Implementing plant hydraulics in the Community Land Model, Version 5. Journal of Advances in Modeling Earth Systems, 11 ( 2 ), 485 â 513. https://doi.org/10.1029/2018ms001500
dc.identifier.citedreferenceKeppelâ Aleks, G., Basile, S. J., & Hoffman, F. M. ( 2018 ). A functional response metric for the temperature sensitivity of tropical ecosystems. Earth Interactions, 22 ( 7 ), 1 â 20. https://doi.org/10.1175/Eiâ Dâ 17â 0017.1
dc.identifier.citedreferenceKonings, A. G., & Gentine, P. ( 2017 ). Global variations in ecosystemâ scale isohydricity. Global Change Biology, 23 ( 2 ), 891 â 905. https://doi.org/10.1111/gcb.13389
dc.identifier.citedreferenceKonings, A. G., Yu, Y. F., Xu, L., Yang, Y., Schimel, D. S., & Saatchi, S. S. ( 2017 ). Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophysical Research Letters, 44 ( 5 ), 2290 â 2299. https://doi.org/10.1002/2016gl072388
dc.identifier.citedreferenceKoven, C. D., Hugelius, G., Lawrence, D. M., & Wieder, W. R. ( 2017 ). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7 ( 11 ), 817. https://doi.org/10.1038/Nclimate3421
dc.identifier.citedreferenceKoven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan, G. B., Lawrence, D. M., & Swenson, S. C. ( 2013 ). The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 10 ( 11 ), 7109 â 7131. https://doi.org/10.5194/bgâ 10â 7109â 2013
dc.identifier.citedreferenceKwon, Y., Yang, Z. L., Zhao, L., Hoar, T. J., Toure, A. M., & Rodell, M. ( 2016 ). Estimating snow water storage in North America using CLM4, DART, and snow radiance data assimilation. Journal of Hydrometeorology, 17 ( 11 ), 2853 â 2874. https://doi.org/10.1175/Jhmâ Dâ 16â 0028.1
dc.identifier.citedreferenceLamarque, J.â F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., & Van Vuuren, D. P. ( 2010 ). Historical (1850â 2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics Discussions, 10 ( 2 ), 4963 â 5019. https://doi.org/doi:10.5194/acpdâ 10â 4963â 2010
dc.identifier.citedreferenceLawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., De Nobletâ Ducoudré, N., Pongratz, J., Seneviratne, S. I., & Shevliakova, E. ( 2016 ). The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geoscientific Model Development, 9 ( 9 ), 2973 â 2998. https://doi.org/10.5194/gmdâ 9â 2973â 2016
dc.identifier.citedreferenceLawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., & Slater, A. G. ( 2015 ). Permafrost thaw and resulting soil moisture changes regulate projected highâ latitude CO2 and CH4 emissions. Environmental Research Letters, 10 ( 9 ), 094011. https://doi.org/10.1088/1748â 9326/10/9/094011
dc.identifier.citedreferenceLawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z. L., Levis, S., Sakaguchi, K., Bonan, G. B., & Slater, A. G. ( 2011 ). Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3 ( 3 ). https://doi.org/DOI, https://doi.org/10.1029/2011MS000045
dc.identifier.citedreferenceLawrence, D. M., & Slater, A. G. ( 2008 ). Incorporating organic soil into a global climate model. Climate Dynamics, 30 ( 2â 3 ), 145 â 160. https://doi.org/doi:10.1007/s00382â 007â 0278â 1
dc.identifier.citedreferenceLawrence, D. M., Slater, A. G., Romanovsky, V. E., & Nicolsky, D. J. ( 2008 ). The sensitivity of a model projection of nearâ surface permafrost degradation to soil column depth and inclusion of soil organic matter. Journal of Geophysical Research, 113 ( F2 ). https://doi.org/10.1029/2007JF000883
dc.identifier.citedreferenceLawrence, D. M., Thornton, P. E., Oleson, K. W., & Bonan, G. B. ( 2007 ). Partitioning of evaporation into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on landâ atmosphere interaction. Journal of Hydrometeorology, 8 ( 4 ), 862 â 880. https://doi.org/10.1175/JHM596.1
dc.identifier.citedreferenceLawrence, P. J., & Chase, T. N. ( 2007 ). Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). Journal of Geophysical Research, 112 ( 112 ). https://doi.org/doi:10.1029/2006JG000168
dc.identifier.citedreferenceLawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill, B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, E., Lindsay, K., & Thornton, P. E. ( 2012 ). Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. Journal of Climate, 25 ( 9 ), 3071 â 3095. https://doi.org/10.1175/Jcliâ Dâ 11â 00256.1
dc.identifier.citedreferenceLe Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F., Goldewijk, K. K., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laanâ Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N., Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., & Zhu, D. ( 2018 ). Global carbon budget 2017. Earth System Science Data, 10 ( 1 ), 405 â 448. https://doi.org/10.5194/essdâ 10â 405â 2018
dc.identifier.citedreferenceLe Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.â H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., & Zaehle, S. ( 2014 ). Global carbon budget 2013. Earth System Science Data, 6 ( 1 ), 235 â 263. https://doi.org/10.5194/essdâ 6â 235â 2014
dc.identifier.citedreferenceLeBauer, D. S., & Treseder, K. K. ( 2008 ). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89 ( 2 ), 371 â 379. https://doi.org/10.1890/06â 2057.1
dc.identifier.citedreferenceLevis, S., Badger, A., Drewniak, B., Nevison, C., & Ren, X. L. ( 2018 ). CLMcrop yields and water requirements: Avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change, 146 ( 3â 4 ), 501 â 515. https://doi.org/10.1007/s10584â 016â 1654â 9
dc.identifier.citedreferenceLevis, S., Hartman, M., & Bonan, G. ( 2014 ). The Community Land Model underestimates landâ use CO 2 emissions by neglecting soil disturbance from cultivation. Geoscientific Model Development, 7 ( 2 ), 613 â 620. https://doi.org/10.5194/gmdâ 7â 613â 2014
dc.identifier.citedreferenceLi, F., & Lawrence, D. M. ( 2017 ). Role of fire in the global land water budget during the twentieth century due to changing ecosystems. Journal of Climate, 30 ( 6 ), 1893 â 1908. https://doi.org/10.1175/Jcliâ Dâ 16â 0460.1
dc.identifier.citedreferenceLi, F., Levis, S., & Ward, D. S. ( 2013 ). Quantifying the role of fire in the Earth systemâ Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10 ( 4 ), 2293 â 2314. https://doi.org/10.5194/bgâ 10â 2293â 2013
dc.identifier.citedreferenceLi, F., Zeng, X., & Levis, S. ( 2012 ). A processâ based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences, 9 ( 7 ), 2761 â 2780. https://doi.org/10.5194/bgâ 9â 2761â 2012
dc.identifier.citedreferenceLi, H. Y., Wigmosta, M. S., Wu, H., Huang, M. Y., Ke, Y. H., Coleman, A. M., & Leung, L. R. ( 2013 ). A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14 ( 3 ), 808 â 828. https://doi.org/10.1175/Jhmâ Dâ 12â 015.1
dc.identifier.citedreferenceLi, Q., Gentine, P., Mellado, J. P., & McColl, K. A. ( 2018 ). Implications of nonlocal transport and conditionally averaged statistics on Moninâ Obukhov similarity theory and Townsend’s attached eddy hypothesis. Journal of the Atmospheric Sciences, 75 ( 10 ), 3403 â 3431. https://doi.org/10.1175/Jasâ Dâ 17â 0301.1
dc.identifier.citedreferenceLi, Y., Guan, K. Y., Gentine, P., Konings, A. G., Meinzer, F. C., Kimball, J. S., Xu, X., Anderegg, W. R. L., McDowell, N. G., Martinezâ Vilalta, J., Long, D. G., & Good, S. P. ( 2017 ). Estimating global ecosystem isohydry/anisohydry using active and passive microwave satellite data. Journal of Geophysical Research, Biogeosciences, 122 ( 12 ), 3306 â 3321. https://doi.org/10.1002/2017jg003958
dc.identifier.citedreferenceLin, Y. S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., Eamus, D., De Dios, V. R., Mitchell, P., Ellsworth, D. S., De Beeck, M. O., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M. L., Cernusak, L. A., Nippert, J. B., Ocheltree, T. W., Tissue, D. T., Martinâ StPaul, N. K., Rogers, A., Warren, J. M., De Angelis, P., Hikosaka, K., Han, Q., Onoda, Y., Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal, D., Bosc, A., Löw, M., Macininsâ Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tauszâ Posch, S., Zaragozaâ Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M., Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama, K., Limousin, J. M., Meir, P., Lola da Costa, A. C., Mikkelsen, T. N., Salinas, N., Sun, W., & Wingate, L. ( 2015 ). Optimal stomatal behaviour around the world. Nature Climate Change, 5 ( 5 ), 459 â 464. https://doi.org/10.1038/Nclimate2550
dc.identifier.citedreferenceLipscomb, W. H., Fyke, J. G., Vizcaino, M., Sacks, W. J., Wolfe, J., Vertenstein, M., Craig, A., Kluzek, E., & Lawrence, D. M. ( 2013 ). Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. Journal of Climate, 26 ( 19 ), 7352 â 7371. https://doi.org/10.1175/Jcliâ Dâ 12â 00557.1
dc.identifier.citedreferenceLipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., & Worley, P. H. ( 2019 ). Description and evaluation of the Community Ice Sheet Model (CISM) v2. 1. Geoscientific Model Development, 12 ( 1 ), 387 â 424. https://doi.org/doi.org/10.5194/gmdâ 12â 387â 2019
dc.identifier.citedreferenceLiu, L., & Greaver, T. L. ( 2010 ). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13 ( 7 ), 819 â 828. https://doi.org/10.1111/j.1461â 0248.2010.01482.x
dc.identifier.citedreferenceLombardozzi, D., Levis, S., Bonan, G., Hess, P. G., & Sparks, J. P. ( 2015 ). The influence of chronic ozone exposure on global carbon and water cycles. Journal of Climate, 28 ( 1 ), 292 â 305. https://doi.org/10.1175/Jcliâ Dâ 14â 00223.1
dc.identifier.citedreferenceLombardozzi, D., Sparks, J. P., & Bonan, G. ( 2013 ). Integrating Oâ 3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling. Biogeosciences, 10 ( 11 ), 6815 â 6831. https://doi.org/10.5194/bgâ 10â 6815â 2013
dc.identifier.citedreferenceLombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S., & Fisher, R. A. ( 2015 ). Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycleâ climate feedback. Geophysical Research Letters, 42 ( 20 ), 8624 â 8631. https://doi.org/10.1002/2015GL065934
dc.identifier.citedreferenceLombardozzi, D. L., Bonan, G. B., Wieder, W., Grandy, A. S., Morris, C., & Lawrence, D. L. ( 2018 ). Cover crops may cause winter warming in snowâ covered regions. Geophysical Research Letters, 45 ( 18 ), 9889 â 9897. https://doi.org/10.1029/2018GL079000
dc.identifier.citedreferenceLuo, Y., Hui, D., & Zhang, D. ( 2006 ). Elevated CO 2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A metaâ analysis. Ecology, 87 ( 1 ), 53 â 63. https://doi.org/10.1890/04â 1724
dc.identifier.citedreferenceMalhi, Y., Doughty, C., & Galbraith, D. ( 2011 ). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366 ( 1582 ), 3225 â 3245. https://doi.org/10.1098/rstb.2011.0062
dc.identifier.citedreferenceMarschner, H. ( 1995 ). Mineral nutrition of higher plants. London Google Scholar: Academic Press. https://doi.org/10.1016/b978â 012473542â 2/50012â 2
dc.identifier.citedreferenceMcGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A. G., & Zhuang, Q. ( 2018 ). Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 15 ), 3882 â 3887. https://doi.org/10.1073/pnas.1719903115
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.