Show simple item record

An order parameter without magic angle effect (OPTIMA) derived from R1ρ dispersion in ordered tissue

dc.contributor.authorPang, Yuxi
dc.date.accessioned2020-02-05T15:05:47Z
dc.date.availableWITHHELD_16_MONTHS
dc.date.available2020-02-05T15:05:47Z
dc.date.issued2020-05
dc.identifier.citationPang, Yuxi (2020). "An order parameter without magic angle effect (OPTIMA) derived from R1ρ dispersion in ordered tissue." Magnetic Resonance in Medicine 83(5): 1783-1795.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/153626
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Royal Society of Chemistry
dc.subject.otherR1ρ dispersion
dc.subject.otheranisotropic R2
dc.subject.othercollagen
dc.subject.othercorrelation time
dc.subject.othermagic angle effect
dc.subject.otherorder parameter
dc.titleAn order parameter without magic angle effect (OPTIMA) derived from R1ρ dispersion in ordered tissue
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153626/1/mrm28045.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153626/2/mrm28045_am.pdf
dc.identifier.doi10.1002/mrm.28045
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceWoessner DE, Zimmerman JR. Nuclear transfer and anisotropic motional spin phenomena ‐ relaxation time temperature dependence studies of water adsorbed on silica gel. IV. J Phys Chem. 1963; 67: 1590 – 1600.
dc.identifier.citedreferenceXia Y. Magic‐angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000; 35: 602 – 621.
dc.identifier.citedreferenceGrunder W. MRI assessment of cartilage ultrastructure. NMR Biomed. 2006; 19: 855 – 876.
dc.identifier.citedreferenceHennel JW, Klinowski J. Magic‐angle spinning: a historical perspective. In: Klinowski J, ed. New Techniques in Solid‐State NMR. Berlin, Heidelberg, Germany: Springer; 2005. p. 1 – 14.
dc.identifier.citedreferenceWoessner DE. Nuclear magnetic‐relaxation and structure in aqueous heterogenous systems. Mol Phys. 1977; 34: 899 – 920.
dc.identifier.citedreferencePeto S, Gillis P, Henri VP. Structure and dynamics of water in tendon from NMR relaxation measurements. Biophys J. 1990; 57: 71 – 84.
dc.identifier.citedreferenceLenk R, Bonzon M, Greppin H. Dynamically oriented biological water as studied by NMR. Chem Phys Lett. 1980; 76: 175 – 177.
dc.identifier.citedreferenceFechete R, Demco D, Blümich B. Order parameters of the orientation distribution of collagen fibers in Achilles tendon by 1H NMR of multipolar spin states. NMR Biomed. 2003; 16: 479 – 483.
dc.identifier.citedreferenceWoessner DE, Snowden BS Jr. Magnetic relaxation under hindered rotation in fluids. Advan Mol Relaxation Processes. 1972; 3: 181 – 197.
dc.identifier.citedreferenceHenkelman RM, Stanisz GJ, Kim JK, Bronskill MJ. Anisotropy of NMR properties of tissues. Magn Reson Med. 1994; 32: 592 – 601.
dc.identifier.citedreferenceRautiainen J, Nissi MJ, Salo E‐N, et al. Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015; 74: 249 – 259.
dc.identifier.citedreferenceHanni M, Nissi MJ, Rautiainen J, Saarakkala S, Ellermann J, Nieminen MT. Determination of correlation time in articular cartilage by T1rho relaxation dispersion. In: Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Ontario, Canada, 2015. Abstract 0117.
dc.identifier.citedreferenceCharagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T‐1 rho‐weighted imaging: correction with a self‐compensating spin‐locking pulse. J Magn Reason. 2003; 162: 113 – 121.
dc.identifier.citedreferenceLi X, Han ET, Busse RF, Majumdar S. In vivo T(1rho) mapping in cartilage using 3D magnetization‐prepared angle‐modulated partitioned k‐space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008; 59: 298 – 307.
dc.identifier.citedreferenceGeerts‐Ossevoort L, de Weerdt E, Duijndam A, et al. Compressed SENSE. Speed done right. Every time. Philips Healthcare; 2018. Available at: https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf. Accessed October 18, 2019.
dc.identifier.citedreferenceKaneko Y, Nozaki T, Yu H, et al. Normal T2 map profile of the entire femoral cartilage using an angle/layer‐dependent approach. J Magn Reson Imaging. 2015; 42: 1507 – 1516.
dc.identifier.citedreferenceMarkwardt CB. Non‐linear least‐squares fitting in IDL with MPFIT. In: Bohlender DA, Durand D, Dowler P, eds. Astronomical Data Analysis Software and Systems XVIII ASP Conference Series, Vol. 411, Proceedings of the Conference Held 2–5 November 2008 at Hotel Loews Le Concorde, Québec City, QC, Canada. San Francisco, CA: Astronomical Society of the Pacific. 2009: 251.
dc.identifier.citedreferenceFriendly M, Monette G, Fox J. Elliptical insights: understanding statistical methods through elliptical geometry. Stat Sci. 2013; 28: 1 – 39.
dc.identifier.citedreferenceGold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004; 183: 343 – 351.
dc.identifier.citedreferenceBella J. Collagen structure: new tricks from a very old dog. Biochem J. 2016; 473: 1001 – 1025.
dc.identifier.citedreferenceChen W. Errors in quantitative T1rho imaging and the correction methods. Quant Imag Med Surg. 2015; 5: 583 – 591.
dc.identifier.citedreferenceMitrea BG, Krafft AJ, Song RT, Loeffler RB, Hillenbrand CM. Paired self‐compensated spin‐lock preparation for improved T‐1 rho quantification. J Magn Reason. 2016; 268: 49 – 57.
dc.identifier.citedreferenceBall P. Water is an active matrix of life for cell and molecular biology. Proc Natl Acad Sci USA. 2017; 114: 13327 – 13335.
dc.identifier.citedreferenceBydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging. 2007; 25: 290 – 300.
dc.identifier.citedreferenceAkella SV, Regatte RR, Wheaton AJ, Borthakur A, Reddy R. Reduction of residual dipolar interaction in cartilage by spin‐lock technique. Magn Reson Med. 2004; 52: 1103 – 1109.
dc.identifier.citedreferenceHanninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep. 2017; 7: 9606.
dc.identifier.citedreferenceBorthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1ρ MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006; 19: 781 – 821.
dc.identifier.citedreferenceBerendsen H. Nuclear magnetic resonance study of collagen hydration. J Chem Phys. 1962; 36: 3297 – 3305.
dc.identifier.citedreferenceMomot KI, Pope JM, Wellard RM. Anisotropy of spin relaxation of water protons in cartilage and tendon. NMR Biomed. 2010; 23: 313 – 324.
dc.identifier.citedreferenceFullerton GD. The magic angle effect in NMR and MRI of cartilage. In: Xia Y, Momot KI, eds. Biophysics and Biochemistry of Cartilage by NMR and MRI. Cambridge, UK: The Royal Society of Chemistry; 2016: 109 – 144.
dc.identifier.citedreferenceTourell MC, Momot KI. Molecular dynamics of a hydrated collagen peptide: insights into rotational motion and residence times of single‐water bridges in collagen. J Phys Chem B. 2016; 120: 12432 – 12443.
dc.identifier.citedreferenceWang L, Regatte RR. T(1)rho MRI of human musculoskeletal system. J Magn Reson Imaging. 2015; 41: 586 – 600.
dc.identifier.citedreferenceRussell C, Pedoia V, Majumdar S, Consortium A‐A. Composite metric R2–R1rho (1/T2 ‐ 1/T1rho ) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: a six‐month follow‐up. J Orthop Res. 2017; 35: 718 – 729.
dc.identifier.citedreferencePang Y, Palmieri‐Smith RM, Malyarenko DI, Swanson SD, Chenevert TL. A unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2–R1 rho) in human knee cartilage study. Magn Reson Med. 2019; 81: 3763 – 3774.
dc.identifier.citedreferenceShao H, Pauli C, Li S, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthritis Cartilage. 2017; 25: 2022 – 2030.
dc.identifier.citedreferenceRoemer FW, Kijowski R, Guermazi A. Editorial: from theory to practice ‐ the challenges of compositional MRI in osteoarthritis research. Osteoarthritis Cartilage. 2017; 25: 1923 – 1925.
dc.identifier.citedreferenceMa YJ, Shao H, Du J, Chang EY. Ultrashort echo time magnetization transfer (UTE‐MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed. 2016; 29: 1546 – 1552.
dc.identifier.citedreferenceAbragam A. The Principles of Nuclear Magnetism. Oxford, UK: Clarendon Press; 1961.
dc.identifier.citedreferenceJones GP. Spin‐lattice relaxation in the rotating frame: weak‐collision case. Phys Rev. 1966; 148: 332 – 335.
dc.identifier.citedreferenceMathur‐De VR. The NMR studies of water in biological systems. Prog Biophys Mol Biol. 1979; 35: 103 – 134.
dc.identifier.citedreferenceKnispel RR, Thompson RT, Pintar MM. Dispersion of proton spin‐lattice relaxation in tissues. J Magn Reason. 1974; 14: 44 – 51.
dc.identifier.citedreferenceDuvvuri U, Goldberg AD, Kranz JK, et al. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci USA. 2001; 98: 12479 – 12484.
dc.identifier.citedreferenceWang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T. Magn Reson Imaging. 2015; 33: 38 – 42.
dc.identifier.citedreferenceFischer M, Majumdar A, Zuiderweg E. Protein NMR relaxation: theory, applications and outlook. Prog NMR Spectr. 1998; 33: 207 – 272.
dc.identifier.citedreferenceSpear JT, Gore JC. New insights into rotating frame relaxation at high field. NMR Biomed. 2016; 29: 1258 – 1273.
dc.identifier.citedreferenceReddy R, Borthakur A, Witschey WR, Kneeland JB. Frontiers in molecular imaging of cartilage: future developments. In: Link TM, ed. Cartilage Imaging: Significance, Techniques, and New Developments. New York, NY: Springer; 2011. p. 213 – 227.
dc.identifier.citedreferenceMlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reason. 2004; 169: 300 – 307.
dc.identifier.citedreferencePang Y. Toward an orientation‐independent MR relaxation metric from R1ρ dispersion in articular cartilage. In: Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Quebec, Canada, 2019. Abstract 1325.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.