Show simple item record

Oxygen Ion Butterfly Distributions Observed in a Magnetotail Dipolarizing Flux Bundle

dc.contributor.authorZhao, S. J.
dc.contributor.authorFu, S. Y.
dc.contributor.authorSun, W. J.
dc.contributor.authorZhou, X. Z.
dc.contributor.authorPu, Z. Y.
dc.contributor.authorXie, L.
dc.contributor.authorWu, T.
dc.contributor.authorXiong, Y.
dc.contributor.authorZhang, H.
dc.contributor.authorZong, Q. G.
dc.contributor.authorYu, F. B.
dc.date.accessioned2020-02-05T15:05:56Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:05:56Z
dc.date.issued2019-12
dc.identifier.citationZhao, S. J.; Fu, S. Y.; Sun, W. J.; Zhou, X. Z.; Pu, Z. Y.; Xie, L.; Wu, T.; Xiong, Y.; Zhang, H.; Zong, Q. G.; Yu, F. B. (2019). "Oxygen Ion Butterfly Distributions Observed in a Magnetotail Dipolarizing Flux Bundle." Journal of Geophysical Research: Space Physics 124(12): 10219-10229.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/153633
dc.description.abstractCluster observed two intermittent oxygen ion (O+) flux enhancements with energy dispersions in a dipolarizing flux bundle, which is known as a region of enhanced northward magnetic field (Bz) embedded in the earthward high‐speed flow. The flux enhancements of O+ show clear pitch angle dependences, which are termed as butterfly distributions. Two corresponding flux enhancements of field‐aligned protons (H+) are also shown in its spectrum, but they are weaker and emerge later (~10 s) than those of O+. Simulation shows that both enhanced ion species are the counterstreaming populations. They originated from the lobe region and were driven into the center plasma sheet by the dawn‐dusk electric field (Ey). Backward tracing test‐particle simulations reproduce the butterfly O+ and the counterstreaming H+ distribution. The differences between O+ and H+ are because of their different gyroradii. The lobe O+ can arrive at the magnetic equatorial plane in less than one gyromotion due to its large gyroradius, and O+ with a larger field‐aligned velocity can arrive at the equatorial plane earlier, leading to the energy and pitch angle dependence. While H+ with similar energy can drift into dipolarizing flux bundle through electric field drift (E × B motion) and arrive at the equatorial plane through adiabatic motion, which consequently forms the field‐aligned flux enhancements in dipolarizing flux bundle, that is, the Bz‐dominant region. The simulation further confirms that intermittent increases of Ey component can produce the two intermittent flux enhancements, as indicated in the in situ observation.Key PointsTwo intermittent butterfly O+ and counterstreaming H+ flux enhancements are observed in a dipolarizing flux bundleO+ enhancements are more intense and emerge earlier than those of H+Convection electric field plays a key role in the formation of butterfly O+ and counterstreaming H+
dc.publisherInterscience
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygen ions
dc.subject.otherdipolarizing flux bundles
dc.subject.otherbutterfly distribution
dc.subject.otherintermittent flux enhancements
dc.titleOxygen Ion Butterfly Distributions Observed in a Magnetotail Dipolarizing Flux Bundle
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153633/1/jgra55404_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153633/2/jgra55404.pdf
dc.identifier.doi10.1029/2019JA027244
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceWanliss, J. A., Sydora, R. D., Rostoker, G., & Rankin, R. ( 2002 ). Origin of some anisotropic tailward flows in the plasma sheet. Annales de Geophysique, 20 ( 10 ), 1559 – 1575. https://doi.org/10.5194/angeo‐20‐1559‐2002
dc.identifier.citedreferenceLiang, H., Lapenta, G., Walker, R. J., Schriver, D., El‐Alaoui, M., & Berchem, J. ( 2017 ). Oxygen acceleration in magnetotail reconnection. Journal of Geophysical Research: Space Physics, 122, 618 – 639. https://doi.org/10.1002/2016JA023060
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Runov, A., & Zhou, X.‐Z. ( 2013 ). On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 118, 2000 – 2020. https://doi.org/10.1002/jgra.50092
dc.identifier.citedreferenceLiu, Y. H., Mouikis, C. G., Kistler, L. M., Wang, S., Roytershteyn, V., & Karimabadi, H. ( 2015 ). The heavy ion diffusion region in magnetic reconnection in the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 120, 3535 – 3551. https://doi.org/10.1002/2015JA020982
dc.identifier.citedreferenceMarkidis, S., Lapenta, G., Bettarini, L., Goldman, M., Newman, D., & Andersson, L. ( 2011 ). Kinetic simulations of magnetic reconnection in presence of a background O + population. Journal of Geophysical Research, 116, A00K16. https://doi.org/10.1029/2011JA016429
dc.identifier.citedreferenceNakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Glassmeier, K. H., Kistler, L., Mouikis, C., Zhang, T. L., Eichelberger, H., & Runov, A. ( 2002 ). Motion of the dipolarization front during a flow burst event observed by Cluster. Geophysical Research Letters, 29 ( 20 ), 1942. https://doi.org/10.1029/2002GL015763
dc.identifier.citedreferenceNorthrop, T. G. ( 1963 ). The adiabatic motion of charged particles. New York: Interscience.
dc.identifier.citedreferenceOhtani, S. I., Shay, M. A., & Mukai, T. ( 2004 ). Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two‐fluid simulations. Journal of Geophysical Research, 109, A03210. https://doi.org/10.1029/2003JA010002
dc.identifier.citedreferencePontius, D. H., & Wolf, R. A. ( 1990 ). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17, 49 – 53.
dc.identifier.citedreferencePritchett, P. L., & Coroniti, F. V. ( 1995 ). Formation of thin current sheets during plasma sheet convection. Journal of Geophysical Research, 100 ( A12 ), 23,551 – 23,565. https://doi.org/10.1029/95JA02540
dc.identifier.citedreferenceRème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., Coeur‐Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., & Seidenschwang, E. ( 2001 ). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Annales de Geophysique, 19 ( 10/12 ), 1303 – 1354. https://doi.org/10.5194/angeo‐19‐1303‐2001
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Artemyev, A., Birn, J., Pritchett, P. L., & Zhou, X.‐Z. ( 2017 ). Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies. Journal of Geophysical Research: Space Physics, 122, 5965 – 5978. https://doi.org/10.1002/2017JA024010
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K.‐H., & Auster, U. ( 2009 ). THEMIS observations of an earthward‐propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980
dc.identifier.citedreferenceSchwartz, S. J. ( 1998 ). Shock and discontinuity normals, Mach numbers and related parameters. In G. Paschmann, & P. W. Daly (Eds.), Analysis methods for multi‐spacecraft data, (pp. 249 – 270 ). Bern, German: Int. Space Sci. Inst.
dc.identifier.citedreferenceSeki, K., Elphic, R. C., Hirahara, M., Terasawa, T., & Mukai, T. ( 2001 ). On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science, 291 ( 5510 ), 1939 – 1941. https://doi.org/10.1126/science.1058913
dc.identifier.citedreferenceShay, M. A., & Swisdak, M. ( 2004 ). Three‐species collisionless reconnection: Effect of O + on magnetotail reconnection. Physical Review Letters, 93 ( 17 ), 175001. https://doi.org/10.1103/PhysRevLett.93.175001
dc.identifier.citedreferenceSun, W. J., Fu, S., Pu, Z., Parks, G. K., Slavin, J. A., Yao, Z., Zong, Q.‐G., Shi, Q., Zhao, D., & Cui, Y. ( 2014 ). The current system associated with the boundary of plasma bubbles. Geophysical Research Letters, 41, 8169 – 8175. https://doi.org/10.1002/2014GL062171
dc.identifier.citedreferenceTenfjord, P., Hesse, M., & Norgren, C. ( 2018 ). The formation of an oxygen wave by magnetic reconnection. Journal of Geophysical Research: Space Physics, 123, 9370 – 9380. https://doi.org/10.1029/2018JA026026
dc.identifier.citedreferenceWolf, R. A., Wan, Y., Xing, X., Zhang, J.‐C., & Sazykin, S. ( 2009 ). Entropy and plasma sheet transport. Journal of Geophysical Research, 114, A00D05. https://doi.org/10.1029/2009JA014.044
dc.identifier.citedreferenceWu, P., & Shay, M. A. ( 2012 ). Magnetotail dipolarization front and associated ion reflection: Particle‐in‐cell simulations. Geophysical Research Letters, 39, L08107. https://doi.org/10.1029/2012GL051486
dc.identifier.citedreferenceWu, T., Fu, S. Y., Zong, Q. G., Sun, W. J., Cui, Y. B., Zhao, D., Guo, R. L., Zhao, S. J., & Wang, Y. F. ( 2016 ). Thin energetic O + layer embedded in the magnetotail reconnection current sheet observed by Cluster. Geophysical Research Letters, 43, 11,493 – 11,500. https://doi.org/10.1002/2016GL071184
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., Wolf, R. A., & Sazykin, S. ( 2011 ). RCM‐E simulation of ion acceleration during an idealized plasma sheet bubble injection. Journal of Geophysical Research, 116, A05207. https://doi.org/10.1029/2010JA016346
dc.identifier.citedreferenceYao, Z., Sun, W. J., Fu, S. Y., Pu, Z. Y., Liu, J., Angelopoulos, V., Zhang, X. J., Chu, X. N., Shi, Q. Q., Guo, R. L., & Zong, Q. G. ( 2013 ). Current structures associated with dipolarization fronts. Journal of Geophysical Research: Space Physics, 118, 6980 – 6985. https://doi.org/10.1002/2013JA019290
dc.identifier.citedreferenceZhao, D., Fu, S. Y., Sun, W. J., Parks, G. K., Zong, Q. G., Shi, Q. Q., Pu, Z. Y., Cui, Y. B., Wu, T., Liu, J., & Zhou, X. Z. ( 2016 ). Electromagnetic disturbances observed near the dip region ahead of dipolarization front. Geophysical Research Letters, 43, 3026 – 3034. https://doi.org/10.1002/2016GL068033
dc.identifier.citedreferenceZhao, S. J., Fu, S. Y., Sun, W. J., Parks, G. K., Zhou, X. Z., Pu, Z. Y., Zhao, D., Wu, T., Yu, F. B., & Zong, Q. G. ( 2018 ). Oxygen ion reflection at earthward propagating dipolarization fronts in the magnetotail. Journal of Geophysical Research: Space Physics, 123, 6277 – 6288. https://doi.org/10.1029/2018JA025689
dc.identifier.citedreferenceZhou, M., Ashour‐Abdalla, M., Deng, X., Schriver, D., El‐Alaoui, M., & Pang, Y. ( 2009 ). THEMIS observation of multiple depolarization fronts and associated wave characteristics in the near‐Earth magnetotail. Geophysical Research Letters, 136, L20107. https://doi.org/10.1029/2009GL040663
dc.identifier.citedreferenceZhou, M., Deng, X., Ashour‐Abdalla, M., Walker, R., Pang, Y., Tang, C., Huang, S., El‐Alaoui, M., Yuan, Z., & Li, H. ( 2013 ). Cluster observations of kinetic structures and electron acceleration within a dynamic plasma bubble. Journal of Geophysical Research: Space Physics, 118, 674 – 684. https://doi.org/10.1029/2012JA018323
dc.identifier.citedreferenceZhou, X.‐Z., Angelopoulos, V., Liu, J., Runov, A., & Li, S.‐S. ( 2014 ). On the origin of pressure and magnetic perturbations ahead of dipolarization fronts. Journal of Geophysical Research: Space Physics, 119, 211 – 220. https://doi.org/10.1002/2013JA019394
dc.identifier.citedreferenceZhou, X.‐Z., Angelopoulos, V., Sergeev, V. A., & Runov, A. ( 2010 ). Accelerated ions ahead of earthward‐propagating dipolarization fronts. Journal of Geophysical Research, 115, A00I03. https://doi.org/10.1029/2010JA015481
dc.identifier.citedreferenceZhou, X.‐Z., Angelopoulos, V., Sergeev, V. A., & Runov, A. ( 2011 ). On the nature of precursor flows upstream of advancing of dipolarization fronts. Journal of Geophysical Research, 116, A03222. https://doi.org/10.1029/2010JA016165
dc.identifier.citedreferenceZhou, X.‐Z., Runov, A., Angelopoulos, V., Artemyev, A. V., & Birn, J. ( 2018 ). On the acceleration and anisotropy of ions within magnetotail depolarizing flux bundles. Journal of Geophysical Research: Space Physics, 123, 429 – 442. https://doi.org/10.1002/2017JA024901
dc.identifier.citedreferenceAngelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97 ( A4 ), 4027 – 4039.
dc.identifier.citedreferenceAngelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., & Gosling, J. T. ( 1994 ). Statistical characteristics of bursty bulk flow events. Journal of Geophysical Research, 99 ( A11 ), 21,257 – 21,280.
dc.identifier.citedreferenceBalogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K. H., Georgescu, E., Glassmeier, K. H., Harris, J., Musmann, G., Oddy, T., & Schwingenschuh, K. ( 2001 ). The Cluster magnetic field investigation: Overview of in‐flight performance and initial results. Annales de Geophysique, 19 ( 10/12 ), 1207 – 1217. https://doi.org/10.5194/angeo‐19‐1207‐2001
dc.identifier.citedreferenceBirn, J., Runov, A., & Hesse, M. ( 2014 ). Energetic electrons in dipolarization events: Spatial properties and anisotropy. Journal of Geophysical Research: Space Physics, 119, 3604 – 3616. https://doi.org/10.1002/2013JA019738
dc.identifier.citedreferenceBirn, J., Runov, A., & Zhou, X.‐Z. ( 2017 ). Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet. Journal of Geophysical Research: Space Physics, 122, 8014 – 8025. https://doi.org/10.1002/2017JA024230
dc.identifier.citedreferenceChen, C. X., & Wolf, R. A. ( 1999 ). Theory of thin‐filament motion in Earth’s magnetotail and its application to bursty bulk flows. Journal of Geophysical Research, 104 ( A7 ), 14,613 – 14,626. https://doi.org/10.1029/1999JA900005
dc.identifier.citedreferenceEastwood, J. P., Goldman, M. V., Hietala, H., Newman, D. L., Mistry, R., & Lapenta, G. ( 2015 ). Ion reflection and acceleration near magnetotail dipolarization fronts associated with magnetic reconnection. Journal of Geophysical Research: Space Physics, 120, 511 – 525. https://doi.org/10.1002/2014JA020516
dc.identifier.citedreferenceEscoubet, C. P., Fehringer, M., & Goldstein, M. ( 2001 ). Introduction: The Cluster mission. Annales de Geophysique, 19, 1197 – 1200.
dc.identifier.citedreferenceFu, S. Y., Wilken, B., Zong, Q.‐G., & Pu, Z. Y. ( 2001 ). Ion composition variation in the inner magnetosphere‐individual and collective storm effects in 1991. Journal of Geophysical Research, 106, 29,683 – 29,698.
dc.identifier.citedreferenceGabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. ( 2012 ). The effects of transient, localized electric fields in equatorial particle acceleration and transport towards the inner magnetosphere. Journal of Geophysical Research, 117, A10213. https://doi.org/10.1029/2012JA017873
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Parks, G. K., Liu, J., Yao, Z. H., Shi, Q. Q., Zong, Q.‐G., Huang, S. Y., Pu, Z. Y., & Xiao, T. ( 2013 ). Field‐aligned currents associated with dipolarization fronts. Geophysical Research Letters, 40, 4503 – 4508. https://doi.org/10.1002/grl.50902
dc.identifier.citedreferenceGustafsson, G., André, M., Carozzi, T., Eriksson, A. I., Fälthammar, C. G., Grard, R., Holmgren, G., Holtet, J. A., Ivchenko, N., Karlsson, T., Khotyaintsev, Y., Klimov, S., Laakso, H., Lindqvist, P. A., Lybekk, B., Marklund, G., Mozer, F., Mursula, K., Pedersen, A., Popielawska, B., Savin, S., Stasiewicz, K., Tanskanen, P., Vaivads, A., & Wahlund, J. E. ( 2001 ). First results of electric field and density observations by Cluster EFW based on initial months of operation. Annales de Geophysique, 19 ( 10/12 ), 1219 – 1240. https://doi.org/10.5194/angeo‐19‐1219‐2001
dc.identifier.citedreferenceHarris, E. G. ( 1962 ). On a plasma sheet separating regions of oppositely directed magnetic field. Nuovo Cimento, 23, 115 – 121.
dc.identifier.citedreferenceKarimabadi, H., Roytershteyn, V., Mouikis, C. G., Kistler, L. M., & Daughton, W. ( 2011 ). Flushing effect in reconnection: Effects of minority species of oxygen ions. Planetary and Space Science, 59 ( 7 ), 526 – 536. https://doi.org/10.1016/j.pss.2010.07.014
dc.identifier.citedreferenceLiang, H., Ashour‐Abdalla, M., Lapenta, G., & Walker, R. J. ( 2016 ). Oxygen impacts on dipolarization fronts and reconnection rate. Journal of Geophysical Research: Space Physics, 121, 1148 – 1166. https://doi.org/10.1002/2015JA021747
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.