Show simple item record

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

dc.contributor.authorRutz, Jonathan J.
dc.contributor.authorShields, Christine A.
dc.contributor.authorLora, Juan M.
dc.contributor.authorPayne, Ashley E.
dc.contributor.authorGuan, Bin
dc.contributor.authorUllrich, Paul
dc.contributor.authorO’brien, Travis
dc.contributor.authorLeung, L. Ruby
dc.contributor.authorRalph, F. Martin
dc.contributor.authorWehner, Michael
dc.contributor.authorBrands, Swen
dc.contributor.authorCollow, Allison
dc.contributor.authorGoldenson, Naomi
dc.contributor.authorGorodetskaya, Irina
dc.contributor.authorGriffith, Helen
dc.contributor.authorKashinath, Karthik
dc.contributor.authorKawzenuk, Brian
dc.contributor.authorKrishnan, Harinarayan
dc.contributor.authorKurlin, Vitaliy
dc.contributor.authorLavers, David
dc.contributor.authorMagnusdottir, Gudrun
dc.contributor.authorMahoney, Kelly
dc.contributor.authorMcClenny, Elizabeth
dc.contributor.authorMuszynski, Grzegorz
dc.contributor.authorNguyen, Phu Dinh
dc.contributor.authorPrabhat, Mr.
dc.contributor.authorQian, Yun
dc.contributor.authorRamos, Alexandre M.
dc.contributor.authorSarangi, Chandan
dc.contributor.authorSellars, Scott
dc.contributor.authorShulgina, T.
dc.contributor.authorTome, Ricardo
dc.contributor.authorWaliser, Duane
dc.contributor.authorWalton, Daniel
dc.contributor.authorWick, Gary
dc.contributor.authorWilson, Anna M.
dc.contributor.authorViale, Maximiliano
dc.date.accessioned2020-02-05T15:06:00Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:06:00Z
dc.date.issued2019-12-27
dc.identifier.citationRutz, Jonathan J.; Shields, Christine A.; Lora, Juan M.; Payne, Ashley E.; Guan, Bin; Ullrich, Paul; O’brien, Travis ; Leung, L. Ruby; Ralph, F. Martin; Wehner, Michael; Brands, Swen; Collow, Allison; Goldenson, Naomi; Gorodetskaya, Irina; Griffith, Helen; Kashinath, Karthik; Kawzenuk, Brian; Krishnan, Harinarayan; Kurlin, Vitaliy; Lavers, David; Magnusdottir, Gudrun; Mahoney, Kelly; McClenny, Elizabeth; Muszynski, Grzegorz; Nguyen, Phu Dinh; Prabhat, Mr.; Qian, Yun; Ramos, Alexandre M.; Sarangi, Chandan; Sellars, Scott; Shulgina, T.; Tome, Ricardo; Waliser, Duane; Walton, Daniel; Wick, Gary; Wilson, Anna M.; Viale, Maximiliano (2019). "The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology." Journal of Geophysical Research: Atmospheres 124(24): 13777-13802.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/153636
dc.description.abstractAtmospheric rivers (ARs) are now widely known for their association with highâ impact weather events and longâ term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARsâ a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key ARâ related metrics based on 20+ different AR identification and tracking methods applied to Modernâ Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteriaâ based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an allâ method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and ARâ related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting ARâ related research to consider.Key PointsThe large number of atmospheric river identification/tracking methods produces large uncertainty related to AR climatology and impactsUncertainty is quantified using the same data (MERRA v2), time period (1980â 2017), region (global where possible), and common metricsThis study presents recommendations regarding the advantages/disadvantages of certain approaches based on science application
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimpacts
dc.subject.otheratmospheric river
dc.subject.otherhydroclimate
dc.subject.otherweather
dc.subject.otherclimate
dc.subject.otherintercomparison
dc.titleThe Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153636/1/jgrd55920_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153636/2/jgrd55920.pdf
dc.identifier.doi10.1029/2019JD030936
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceNewell, R. E., Newell, N. E., Zhu, Y., & Scott, C. ( 1992 ). Tropospheric rivers?â A pilot study. Geophysical Research Letters, 24, 2401 â 2404.
dc.identifier.citedreferenceAlbano, C. M., Dettinger, M. D., & Soulard, C. E. ( 2017 ). Influence of atmospheric rivers on vegetation productivity and fire patterns in the southwestern U.S. Journal of Geophysical Research: Biogeosciences, 122 ( 2 ), 308 â 323. https://doi.org/10.1002/2016JG003608
dc.identifier.citedreferenceAlexander, M. A., Scott, J. D., Swales, D., Hughes, M., Mahoney, K., & Smith, C. A. ( 2015 ). Moisture pathways into the U.S. Intermountain West Associated with heavy winter precipitation events. Journal of Hydrometeorology, 16 ( 3 ), 1184 â 1206. https://doi.org/10.1175/JHMâ Dâ 14â 0139.1
dc.identifier.citedreferenceAult, A. P., Williams, C. R., White, A. B., Neiman, P. J., Creamean, J. M., Gaston, C. J., Ralph, F. M., & Prather, K. A. ( 2011 ). Detection of Asian dust in California orographic precipitation. Journal of Geophysical Research, 116 ( D16 ), D16205. https://doi.org/10.1029/2010JD015351
dc.identifier.citedreferenceBrands, S., Gutiérrez, J. M., & Sanâ Martín, D. ( 2017 ). Twentiethâ century atmospheric river activity along the west coasts of Europe and North America: Algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dynamics, 48 ( 9â 10 ), 2771 â 2795. https://doi.org/10.1007/s00382â 016â 3095â 6
dc.identifier.citedreferenceCordeira, J. M., Ralph, F. M., Martin, A., Gaggini, N., Spackman, J. R., Neiman, P. J., Rutz, J. J., & Pierce, R. ( 2017 ). Forecasting atmospheric rivers during CalWater 2015. Bulletin of the American Meteorological Society, 98 ( 3 ), 449 â 459. https://doi.org/10.1175/BAMSâ Dâ 15â 00245.1
dc.identifier.citedreferenceDettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. ( 2011 ). Atmospheric rivers, floods, and the water resources of California. Water, 2011 ( 3 ), 445 â 478.
dc.identifier.citedreferenceDettinger, M. D., Ralph, F. M., & Rutz, J. J. ( 2018 ). Empirical return periods of the most intense vapor transports during historical atmospheric river landfalls on the U.S. West Coast. Journal of Hydrometeorology, 19 ( 8 ), 1363 â 1377. https://doi.org/10.1175/JHMâ Dâ 17â 0247.1
dc.identifier.citedreferenceEspinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. ( 2018 ). Global analysis of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 45 ( 9 ), 4299 â 4308. https://doi.org/10.1029/2017GL076968
dc.identifier.citedreferenceGao, Y., Lu, J., & Leung, L. R. ( 2016 ). Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. Journal of Climate, 29 ( 18 ), 6711 â 6726. https://doi.org/10.1175/JCLIâ Dâ 16â 0088.1
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.â K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., & Zhao, B. ( 2017 ). The Modernâ Era Retrospective Analysis for Research and Applications, Version 2 (MERRAâ 2). Journal of Climate, 30 ( 14 ), 5419 â 5454. https://doi.org/10.1175/jcliâ dâ 16â 0758.1
dc.identifier.citedreferenceGershunov, A., Shulgina, T., Ralph, F. M., Laver, D. A., & Rutz, J. J. ( 2017 ). Assessing the climateâ scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters, 44 ( 15 ), 7900 â 7908. https://doi.org/10.1002/2017GL074175
dc.identifier.citedreferenceGoldenson, N., Leung, L. R., Bitz, C. M., & Blanchardâ Wrigglesworth, E. ( 2018 ). Influence of atmospheric rivers on mountain snowpack in the Western United States. Journal of Climate, 31 ( 24 ), 9921 â 9940. https://doi.org/10.1175/JCLIâ Dâ 18â 0268.1
dc.identifier.citedreferenceGorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. ( 2014 ). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41 ( 17 ), 6199 â 6206. https://doi.org/10.1002/2014GL060881
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2015 ). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120 ( 24 ), 12514 â 12535. https://doi.org/10.1002/2015JD024257
dc.identifier.citedreferenceHagos, S. M., Leung, L. R., Yoon, J.â H., Lu, J., & Gao, Y. ( 2016 ). A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophysical Research Letters, 43 ( 3 ), 1357 â 1363. https://doi.org/10.1002/2015GL067392
dc.identifier.citedreferenceHatchett, B. J., Burak, S., Rutz, J. J., Oakley, N. S., Bair, E. H., & Kaplan, M. L. ( 2017 ). Avalanche fatalities during atmospheric river events in the Western United States. Journal of Hydrometeorology, 18 ( 5 ), 1359 â 1374. https://doi.org/10.1175/JHMâ Dâ 16â 0219.1
dc.identifier.citedreferenceHuning, L. S., Margulis, S. A., Guan, B., Waliser, D. E., & Neiman, P. J. ( 2017 ). Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophysical Research Letters, 44 ( 20 ), 10,445 â 10,453. https://doi.org/10.1002/2017GL075201
dc.identifier.citedreferenceLamjiri, M. A., Dettinger, M. D., Ralph, F. M., & Guan, B. ( 2017 ). Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophysical Research Letters, 44 ( 13 ), 7020 â 7028. https://doi.org/10.1002/2017GL074193
dc.identifier.citedreferenceLavers, D. A., & Villarini, G. ( 2013 ). Atmospheric Rivers and flooding over the central United States. Journal of Climate, 26 ( 20 ), 7829 â 7836. https://doi.org/10.1175/JCLIâ Dâ 13â 00212.1
dc.identifier.citedreferenceLavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., & Wade, A. J. ( 2012 ). The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the largeâ scale climatic circulation. Journal of Geophysical Research, 117 ( D20 ), D20106. https://doi.org/10.1029/2012JD018027
dc.identifier.citedreferenceLavers, D. A., Zsoter, E., Richardson, D. S., & Pappenberger, F. ( 2017 ). An assessment of the ECMWF extreme forecast index for water vapor transport during boreal winter. Weather and Forecasting, 32 ( 4 ), 1667 â 1674. https://doi.org/10.1175/WAFâ Dâ 17â 0073.1
dc.identifier.citedreferenceLeung, L. R., & Qian, Y. ( 2009 ). Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophysical Research Letters, 36 ( 3 ), L03820. https://doi.org/10.1029/2008GL036445
dc.identifier.citedreferenceLora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. ( 2017 ). North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophysical Research Letters, 44 ( 2 ), 1051 â 1059. https://doi.org/10.1002/2016GL071541
dc.identifier.citedreferenceLukens, K. E., Berbery, E. H., & Hodges, K. I. ( 2018 ). The imprint of strongâ storm tracks on winter weather in North America. Journal of Climate, 31 ( 5 ), 2057 â 2074. https://doi.org/10.1175/JCLIâ Dâ 17â 0420.1
dc.identifier.citedreferenceMahoney, K., Jackson, D. L., Neiman, P., Hughes, M., Darby, L., Wick, G., White, A., Sukovich, E., & Cifelli, R. ( 2016 ). Understanding the role of atmospheric rivers in heavy precipitation in the Southeast United States. Monthly Weather Review, 144 ( 4 ), 1617 â 1632. https://doi.org/10.1175/MWRâ Dâ 15â 0279.1
dc.identifier.citedreferenceMudigonda, M., Kim, S., Mahesh, A., Kahou, S., Kashinath, K., Williams, D., V. Michalski, T. A. Oâ Brien, & Prabhat, M. ( 2017 ). Segmenting and tracking extreme climate events using neural networks. In 31st Conference on Neural Information Processing System, 1â 5. Long Beach, CA, USA.
dc.identifier.citedreferenceMundhenk, B. D., Barnes, E. A., & Maloney, E. D. ( 2016 ). Allâ season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29 ( 13 ), 4885 â 4903. https://doi.org/10.1175/JCLIâ Dâ 15â 0655.1
dc.identifier.citedreferenceMuszynski, G., Kashinath, K., Kurlin, V., Wehner, M., & Prabhat ( 2019 ). Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. Geoscientific Model Development, 12 ( 2 ), 613 â 628. https://doi.org/10.5194/gmdâ 12â 613â 2019
dc.identifier.citedreferenceNeiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D. ( 2008 ). Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I Satellite observations. Journal of Hydrometeorology, 9 ( 1 ), 22 â 47. https://doi.org/10.1175/2007JHM855.1
dc.identifier.citedreferenceNewman, M., Kiladis, G. N., Weickmann, K. M., Ralph, F. M., & Sardeshmukh, P. D. ( 2012 ). Relative contributions of synoptic and lowâ frequency eddies to timeâ mean atmospheric moisture transport, including the role of atmospheric rivers. Journal of Climate, 25, 7341 â 7361. https://doi.org/10.1175/JCLIâ Dâ 11â 00665.1
dc.identifier.citedreferenceOakley, N. S., Lancaster, J. T., Kaplan, M. L., & Ralph, F. M. ( 2017 ). Natural Hazards, 88 ( 1 ), 327 â 354. https://doi.org/10.1007/s11069â 017â 2867â 6
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2014 ). Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA Reanalysis. Journal of Climate, 27 ( 18 ), 7133 â 7150. https://doi.org/10.1175/JCLIâ Dâ 14â 00034.1
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2015 ). An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. Journal of Geophysical Research: Atmospheres, 120 ( 21 ), 11,173 â 11,190. https://doi.org/10.1002/2015JD023586
dc.identifier.citedreferenceRadiÄ , V., Cannon, A. J., Menounos, B., & Gi, N. ( 2015 ). Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. Journal of Geophysical Research: Atmospheres, 120 ( 18 ), 9279 â 9302. https://doi.org/10.1002/2015JD023279
dc.identifier.citedreferenceRalph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., & Dettinger, M. D. ( 2013 ). Observed impacts of duration and seasonality of atmosphericâ river landfalls on soil moisture and runoff in Coastal Northern California. Journal of Hydrometeorology, 14 ( 2 ), 443 â 459. https://doi.org/10.1175/JHMâ Dâ 12â 076.1
dc.identifier.citedreferenceRalph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., & Eylander, J. ( 2018a ). Defining â Atmospheric Riverâ : How the Glossary of Meteorology helped resolve a debate. Bulletin of the American Meteorological Society, 99 ( 4 ), 837 â 839. https://doi.org/10.1175/BAMSâ Dâ 17â 0157.1
dc.identifier.citedreferenceRalph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds, D., Schick, L. J., & Smallcomb, C. ( 2019 ). A scale to characterize the strength and impacts of atmospheric rivers. Bulletin of the American Meteorological Society, 100 ( 2 ), 269 â 289. https://doi.org/10.1175/BAMSâ Dâ 18â 0023.1
dc.identifier.citedreferenceRalph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J., Asgariâ Lamjiri, M., Barnes, E. A., Gershunov, A., Guan, B., Nardi, K., Osborne, T., & Wick, G. A. ( 2018b ). Comparison of atmospheric river detection tools: How many atmospheric rivers hit Northern California’s Russian River Watershed? https://doi.org/10.1007/s00382â 018â 4427â 5.
dc.identifier.citedreferenceRamos, A. M., Nieto, R., Tomé, R., Gimeno, L., Trigo, R. M., Liberato, M. L. R., & Lavers, D. A. ( 2016 ). Atmospheric rivers moisture sources from a Lagrangian perspective. Earth System Dynamics, 7 ( 2 ), 371 â 384. https://doi.org/10.5194/esdâ 7â 371â 2016
dc.identifier.citedreferenceRamos, A. M., Trigo, R. M., Liberato, M. L., & Tomé, R. ( 2015 ). Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16 ( 2 ), 579 â 597. https://doi.org/10.1175/JHMâ Dâ 14â 0103.1
dc.identifier.citedreferenceRamos, A. M., Wilson, A. M., DeFlorio, M. J., Warner, M. D., Barnes, E., Garreaud, R., Gorodetskaya, I. V., Lavers, D. A., & Moore, B. ( 2019 ). 2018 International Atmospheric Rivers Conference: Multiâ disciplinary studies and highâ impact applications of atmospheric rivers. Atmospheric Science Letters, 20 ( 9 ), e935. https://doi.org/10.1002/asl.935
dc.identifier.citedreferenceRutz, J. J., Steenburgh, W. J., & Ralph, F. M. ( 2014 ). Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States. Monthly Weather Review, 142 ( 2 ), 905 â 921. https://doi.org/10.1175/MWRâ Dâ 13â 00168.1
dc.identifier.citedreferenceRutz, J. J., Steenburgh, W. J., & Ralph, F. M. ( 2015 ). The inland penetration of atmospheric rivers over Western North America: A Lagrangian analysis. Monthly Weather Review, 143 ( 5 ), 1924 â 1944. https://doi.org/10.1175/MWRâ Dâ 14â 00288.1
dc.identifier.citedreferenceSellars, S. L., Gao, X., & Sorooshian, S. ( 2015 ). An objectâ oriented approach to investigate impacts of climate oscillations on precipitation: A Western United States case study. Journal of Hydrometeorology, 16 ( 2 ), 830 â 842. https://doi.org/10.1175/JHMâ Dâ 14â 0101.1
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016a ). Atmospheric river landfallâ latitude changes in future climate simulations. Geophysical Research Letters, 43 ( 16 ), 8775 â 8782. https://doi.org/10.1002/2016GL070470
dc.identifier.citedreferenceShields, C. A., & Kiehl, J. T. ( 2016b ). Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophysical Research Letters, 43 ( 14 ), 7767 â 7773. https://doi.org/10.1002/2016GL069476
dc.identifier.citedreferenceShields, C. A., Rutz, J. J., Leung, L.â Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., & Nguyen, P. ( 2018 ). Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11 ( 6 ), 2455 â 2474. https://doi.org/10.5194/gmdâ 11â 2455â 2018
dc.identifier.citedreferenceTrenberth, K. E. ( 1991 ). Storm tracks in the Southern Hemisphere. Journal of the Atmospheric Sciences, 48 ( 19 ), 2159 â 2178. https://doi.org/10.1175/1520â 0469(1991)048<2159:STITSH>2.0.CO;2
dc.identifier.citedreferenceViale, M., Valenzuela, R., Garreaud, R., & Ralph, F. M. ( 2018 ). Impacts of atmospheric rivers on precipitation over southern South America. Journal of Hydrometeorology, 19 ( 10 ), 1671 â 1687. https://doi.org/10.1175/JHMâ Dâ 18â 0006.1
dc.identifier.citedreferenceWarner, M. D., Mass, C. F., & Salathé, E. P. ( 2015 ). Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. Journal of Hydrometeorology, 16 ( 1 ), 118 â 128. https://doi.org/10.1175/JHMâ Dâ 14â 0080.1
dc.identifier.citedreferenceWehner, M. F., Reed, K. A., Li, F., Prabhat Bacmeister, J., Chen, C.â T., Paciorek, C., Gleckler, P. J., Sperber, K. R., Collins, W. D., Gettelman, A., & Jablonowski, C. ( 2014 ). The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. Journal of Advances in Modeling Earth Systems, 6, 980 â 997. https://doi.org/10.1002/2013MS000276
dc.identifier.citedreferenceWick, G. A., Neiman, P. J., & Ralph, F. M. ( 2013 ). Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Transactions on Geoscience and Remote Sensing, 51 ( 4 ), 2166 â 2176. https://doi.org/10.1109/TGRS.2012.2211024
dc.identifier.citedreferenceZhu, Y., & Newell, R. E. ( 1998 ). A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review, 126 ( 3 ), 725 â 735. https://doi.org/10.1175/1520â 0493(1998)126<0725:APAFMF>2.0.CO;2
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.